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a b s t r a c t

This paper suggests a novel three-level model-free hierarchical learning approach that solves the reference
trajectory tracking problem for control systems (CSs). The new approach consists of the low level, the in-
termediate level and the high level, it relies on past memorized optimal input output execution patterns and
adaptively merges them using a similarity measure. The low level feedback control is carried out in a novel
model-free framework using a neural network (NN) controwller tuned by Virtual Reference Feedback Tuning
(VRFT) in order to linearize the closed-loop CS and to match a linear reference model. The NN controller is
tuned in two phases, an offline one and an online one. Nonlinear Model Predictive Control (NMPC) is first
employed in the novel offline tuning phase. The online tuning phase makes next use only of the process sign
in the dynamic back-propagation mechanism that updates the NN parameters. After the NN controller is
trained and the feedback CS is fixed, the optimal execution patterns (input/output patterns) are defined in
terms of optimal control problems, which balance control accuracy and control effort. The input/output
patterns are formulated over a feedback CS and are solved in a model-free Iterative Learning Control (ILC)
framework for linear time-invariant systems at the intermediate level. Once the optimal executions are
learned at the intermediate level over the feedback CS, they are stored in a database (DB). Then each time a
new trajectory is to be tracked as required by the high level planner, similar patterns of executions are
looked-up in the DB and are merged by the weighted average sum of most similar patterns resulted from a
sort algorithm using a distance metric. The proposed approach is tested on the position control of a Single
Input-Single Output nonlinear aerodynamic control system and shows trajectory tracking performance im-
provement with respect to the case when no learnt experience is used.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As the control systems (CS) become more and more complex and
they need to cope with new situations to which they were not ex-
posed before, the cognitive control capabilities are more and more
demanding. The biological systems seem to approach the problem of
solving complex tasks not explicitly mathematically but by combining
the accumulated knowledge stored in memory and formulated as
primitives, referred to also as strategies (Mussa-Ivaldi and Solla, 2004).
Therefore, by combining primitives the living organisms are capable to
carry out more complex maneuvers. The living organisms next sub-
sequently add this capability to their current knowledge base, and an
extension of the knowledge base is achieved. In this sense, several
abilities are needed for the brain of biological systems, such as:

– Strategy projection to achieve the goal, this ability is associated
with reasoning and planning.

– Ability to decompose the strategy into well-known strategies,
this also represents a planning ability.

– Necessity of storing the learned strategies, this ability is asso-
ciated with the memory.

– Feedback to improve new strategies by repeated trials, the
feedback abilities are associated with learning.

The brain acts as a high level hierarchical control planner and
supervisor that coordinates the low level control at the neuro-
muscular system. Learning therefore occurs at every hierarchical
control level under different forms. This learning is mainly done by
fusing the information from visual, tactile, auditory and olfactory
sensors.

The classes of control structures and algorithms in motor
control learning of the biological systems are: predictive or feed-
forward control, reactive control, which uses the sensor informa-
tion to update control, and biomechanical control. All these
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structures and algorithms are addressable within optimal feedback
control frameworks (Wolpert et al., 2011). Several types of motor
learning processes that are acknowledged in practice are: error-
based learning, reinforcement learning and use-dependent learn-
ing (Wolpert et al., 2011). The error-based learning exploits the
gradients of the error with respect to changes in the motor control
signals, while the use-dependent learning deals with continuous
changing of the motor system due to pure repetitions; hence, the
variability of the specific executed task is reduced, but also a bias is
induced towards this trained direction such that when a slightly
different motion is performed, relearning is needed.

The aforementioned types of learning occur in a diversity of
situations when, for example, the specifications change in terms of
tasks/motions have to be executed at different speeds, with dif-
ferent accuracies or in changing environments. The learning can be
analyzed in comparison with the combination of learning and
adaptation that occurs in classical two-degree-of-freedom control
systems structures, both in the feedback structures (in closed-
loop) or in the feed-forward control ones, either in iterative con-
trol approaches or in adaptive control ones. The major character-
istic of these types of learning behavior is however, that the
mathematical model (or the internal representation) of the en-
vironment is not explicitly used to back-propagate the error in-
formation to the corrective actions. Although the learning and
adaptation are formalized in theory, the actual achievement in the
neuromuscular system is still unknown (Wolpert et al., 2011).

Another learning situation that occurs in biological systems –

associated with high level learning and planning capability – is the
one in which, in the same environment, a new task is to be per-
formed and was never seen before as, for example, a new different
hand reaching motion. The brain seems to be able to predict ex-
ecution plans for the limb that delivers nearly optimal executions in
terms of motion performance. In doing so, it seems to be able to mix
and merge different already optimized/learned motion patterns
(strategies) that are stored in the memory. This task is again a black-
box one by not being explicitly computational on one hand and by
also being done outside conscious awareness on the other hand. This
concept corresponds to one formal representation in motor learning
called primitive-based learning (Wolpert et al., 2011).

The combinations of the above mentioned learning concepts
are the motivation and the main contribution for this paper's
work, which proposes a three-level model-free hierarchical
learning approach that solves the reference trajectory tracking
problem for control systems (CSs). This new approach, which
consists of the low level, the intermediate level and the high level,
is focused on the replication of some of the learning, planning and
prediction mechanisms presented above.

The low level feedback controller tuning is carried out using a
novel neural network (NN)-Virtual Reference Feedback Tuning
(NN-VRFT) approach for which the tuning is carried out in two
steps in a Direct Model Reference Adaptive Control (DMRAC) set-
ting. The first tuning phase of the NN controller is done offline
using VRFT by employing a Nonlinear Model Predictive Control
(NMPC) scheme, and in the second tuning phase only the process
sign is needed to back-propagate the error in order to adaptively
correct the NN parameters/weights. The proposed tuning has as a
main consequence the feedback linearization of the CS and re-
presents another contribution of the paper.

After the low level feedback CS is fixed, a model-free Iterative
Learning Control (MFILC) approach is proposed at the intermediate
level to optimize the reference input/controlled output behaviors
called primitive pairs, or simply primitives. The learning is per-
formed under a criterion that balances execution accuracy and
execution effort as well.

These reference input/controlled output pairs are stored into
the memory under the form of a database (DB). The convergence

of the learning scheme can be tackled based on the enforced CS
description via the NN-VRFT design.

When a new task to be executed is dictated by a high level
planner, the already optimized primitives are adaptively merged at
the high level based on a similarity and selection criterion rather
than by using a model of the CS to explicitly compute offline op-
timal solutions to the new task. This approach adaptively com-
putes the reference inputs to address a diversity of requirements
that can occur in the execution of the new task. For example, at
different execution stages, different speeds may be required, or
different efforts, or even different precisions. The resulting model-
free adaptive control based on merging optimized primitives is
another contribution of this paper.

Several approaches to primitive-based learning in the theore-
tical framework of CSs are presented in the literature. As shown in
(Radac and Precup, 2015a), these approaches are organized in
three categories: time-scale transformation approaches, temporal
concatenation of primitive-based approaches, and time-based
decomposition approaches. These categories are briefly discussed
as follows.

Recent time-scale transformation approaches are presented in
(Kawamura and Sakagami, 2002; Ijspeert et al., 2002). An Iterative
Learning Control (ILC)-based approach is suggested in (Kawamura
and Sakagami, 2002) to improve the maneuvers of an underwater
robotic manipulator. A demonstration by learning approach is
proposed in (Ijspeert et al., 2002). Each motion primitive is en-
coded in (Ijspeert et al., 2002) through the same nonlinear dy-
namic equations called attractor dynamics, which are invariant
with respect to time scale, initial conditions and execution time.
The motion equations are parameterized by Gaussian kernels and
the parameters of each primitive are learned independently.

Temporal concatenations of primitive-based approaches are
suggested in (Hoelzle et al., 2011; Schölling et al., 2011; Grymin
et al., 2014). The feasibility of primitive motion tasks for Un-
manned Aerial Vehicles is discussed in (Schölling et al., 2011). The
Fourier series decomposition is applied to obtain the motion pri-
mitives needed in choreographic motion, and the temporal con-
catenation of primitives is proposed. The concept of library of
motion primitives is suggested in (Hoelzle et al., 2011). A pair of
input/output trajectories is available for each primitive, and these
trajectories are learned by ILC. The temporal concatenation of
primitives generates complex trajectories, and the Linear Time-
Invariant (LTI) systems framework analysis is inserted in a
bumpless transfer mechanism between primitives. An A* search
algorithm for the optimal temporal concatenation of primitives for
mobile robot obstacle avoidance is proposed in (Grymin et al.,
2014). The primitive execution control is optimally designed via
Linear Matrix Inequalities in a hybrid Linear Time-Variant systems
framework.

A time-based decomposition approach is given in (Wang and
Zou, 2014). The primitives are B-spline functions, considered as
elements of the library of primitives. The real-time planning of
trajectories is performed using the learned B-spline primitives and
combining them in the LTI systems framework.

None of the above primitive-based approaches rely on the
model-free design of both the low level feedback controller and
the high level ILC controller, which is different from our novel
model-free approach.

VRFT (Previdi et al., 2004; Campi and Savaresi, 2006; Esparza
et al., 2011; Formentin et al., 2013) belongs to data-driven or data-
based model-free approaches employed in feedback controller
tuning. Some of them are iterative experiment-based such as
Iterative Feedback Tuning (IFT) (Hjalmarsson, 2002; Sjöberg et al.,
2009), iterative Correlation-based Tuning (Mišković et al., 2007),
Simultaneous Perturbation Stochastic Approximation (SPSA) (Spall
and Cristion, 1998). Other model-free adaptive approaches include
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