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a b s t r a c t

In this paper we propose a Lyapunov theory based Markov game fuzzy controller which is both safe and
stable. We attempt to optimize a reinforcement learning (RL) based controller using Markov games,
simultaneously hybridizing it with a Lyapunov theory based control for stability. Proposed technique
generates in an RL based game theoretic, adaptive, self learning, optimal fuzzy controller which is both
robust and has guaranteed stability. Proposed controller is an “annealed” hybrid of fuzzy Markov games
and the Lyapunov theory based control. Fuzzy systems have been employed as generic function ap-
proximators for scaling the proposed approach to continuous state-action domains. We test our proposed
controller on three benchmark non-linear control problems: (i) inverted pendulum, (ii) trajectory
tracking of standard two-link robotic manipulator, and (iii) tracking control of a two link selective
compliance assembly robotic arm (SCARA). Simulation results and comparative evaluation against
baseline fuzzy Markov game based control showcases superiority and effectiveness of the proposed
approach.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reinforcement learning (RL) paradigm centers on Markov De-
cision Processes (MDP) as the underlying model for adaptive op-
timal control of non-linear systems (Busoniu et al., 2010; Wiering
and van Otterlo, 2012). A critical assumption in the MDP based RL
technique is the assumption of a stationary environment. How-
ever, imposing such a restrictive assumption on the environment
may not be feasible, especially when the controller has to deal
with disturbances and parametric variations.

Notwithstanding this limitation, RL has been used successfully
for controlling a wide variety of non linear systems, e.g., in Ko-
bayashi et al. (2009) a meta-learning method based on temporal
difference has been employed for inverted pendulum control
(IPC); Kumar et al. (2012) presents a self tuning fuzzy Q controller
for IPC; Ju et al. (2014) proposes kernel based approximate dy-
namic programming approach for inverted pendulum control, and
in Liu et al. (2014) an experience replay least squares policy
iteration procedure has been proposed for efficient utilization of
experiential information. In literature, we can find quite a few
variants of the inverted pendulum problem. However, in our work,
we have used standard version of the pendulumwherein the pivot
point is mounted on a cart which can move horizontally.

Another domain where RL has been applied is robotic

manipulator control, which is a highly coupled, non linear and
time varying task. The task becomes even more challenging when
the controller has to cope with varying payload mass and external
disturbances. Both, neural network based RL and fuzzy systems
based RL have been employed for robotic manipulator control.
In Lin (2009) authors have used an H1 reinforcement learning
based controller on a fuzzy wavelet network (FWN).They imple-
ment an actor-critic RL formulation avoiding complex Ricatti
equations for controlling SCARA. An adaptive neural RL control has
been proposed in Tang et al. (2014) to counter unknown functions
and dead zone inputs in an actor-critic RL configuration, wherein
Lyapunov theory has been employed to show boundedness of all
closed loop signals. For a comprehensive and in-depth look on
controllers employing soft computing techniques, e.g., neural
networks, fuzzy systems and evolutionary computation on robotic
manipulators; we refer the reader to (Katic and Vukobratovic,
2013).

As stated earlier, all RL based controller design approaches
share a basic lacuna that they assume an MDP framework. To make
RL controller design process more general and robust, we in-
troduced a Markov game formulation wherein the noise and dis-
turbance are viewed as an “opponent” to the “controller” in a game
theoretic setup (Sharma and Gopal, 2008). This formulation
helped us in designing RL controllers that are robust in handling
disturbances and noise as the controller always tries to optimize
against the “worst case” opponent or noise. Markov Game for-
mulation (Sharma and Gopal, 2008) allows broadening of the MDP
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based RL control to encompass multiple adaptive agents with
competitive goals. Markov game controller was able to deal with
disturbances and parameter variations of the controlled plant.
However, both MDP and Markov games based RL approaches
failed to address one key concern, namely, stability of the designed
controller.

To be specific, there is no guarantee that the controller will
remain stable in presence of disturbances and/or parameter var-
iations. Our attempt herein is to design self learning, model free
controllers with guaranteed stability. This is sought to be achieved
by incorporating a Lyapunov theory based action generation me-
chanism in the game theoretic RL setup. The controller has all the
advantages of game based RL (Markov game control) and has
guaranteed stability due to inclusion of a Lyapunov theory based
action.

This work is motivated by a need for addressing the stability
issue in RL based control by proposing a ‘safe and stable' game
theoretic controller. The controller is safe as it uses a Markov game
framework for optimization; controller always optimises against
the worst opponent or plays ‘safe’ as referred to in the game
theory literature (Vrabie and Vamvoudakis, 2013). In the proposed
approach Markov game based ‘safe’ policy is hybridized with a
Lyapunov theory based ‘stable’ policy for generating a ‘safe and
stable' policy. This hybridization is carried out in an ‘annealed’ or
gradual manner for arriving at a safe and stable game theoretic
control.

Robotic manipulators (Katic and Vukobratovic, 2013) are highly
coupled, non linear and time varying uncertain systems. Further-
more, industrial robotic manipulators are employed for picking up
and releasing objects or they have to deal a with varying payload
mass. This presents a highly challenging and complex task for
testing our proposed approach. We test our approach on two de-
grees of freedom (DOF) robotic manipulators as they capture all
the intricacies of a six DOF manipulator and are computationally
less expensive. We employ the approach on two robotic arms, i.e.,
a standard two link robot arm and a SCARA.

Proposed controller belongs to the class of self learning/adap-
tive systems with roots in Machine Learning (Wiering and van
Otterlo, 2012). In contrast to other Artificial Intelligence based and
conventional controllers, RL based controllers do not assume ac-
cess to desired response or trajectory. Proposed controller neither
assumes knowledge of desired response nor system model. The
controller discovers optimal actions by repeated trial and error
interactions with the systems/plant it intends to control. It has
access to only a heuristic reinforcement signal emanated by the
plant telling the controller whether the action taken by it is “good”
or “bad”. This makes control task a very challenging one. The ad-
vantage is that the designed controller is a self learning, adaptive
and is suitable for controlling an unknown system.

The paper is structured as follows: a systematic presentation of
the RL approaches that lead to the formulation of the proposed
methodology is presented in Section 2. Formulation of Lyapunov
theory based stable Markov game fuzzy controller for the three
tasks: a) inverted pendulum b) Two link robotic manipulator and
c) SCARA, along with simulation models and parameters thereof,
have been described in Section 3. Section 4 presents simulation
results and comparative evaluation of Lyapunov Markov game
fuzzy control against baseline fuzzy Markov game control for the
three problems. Section 5 summarises the paper and outlines
scope for future work.

2. Lyapunov theory based Markov game fuzzy approach

To facilitate reader understanding of the proposed approach,
we give a brief description of some relevant RL approaches.

2.1. Reinforcement learning algorithms

Reinforcement Learning is an online learning paradigm
wherein the learning agent's goal is to adapt its behavior to
maximize/minimize a cumulative reward/cost obtained from the
environment (Busoniu et al., 2010). The key feature that sets RL
apart from other Artificial Intelligence based techniques is its ex-
tremely goal-oriented nature, and ability to sacrifice short term
gains for long term benefits.

There are various ways for designing an RL based controller
(Wiering and van Otterlo, 2012). However, in principle, they can be
broadly classified as a) model based, and b) model free. In model
based RL an explicit model of the system is constructed while in
model free RL the model is built impromptu, when the agent at-
tempts to control the system. Herein, we briefly describe the
model free RL approach of Q learning (Busoniu et al., 2010). For
other RL approaches the reader is referred to (Wiering and van
Otterlo, 2012).

2.1.1. Q learning
At every time stage k, an adaptive agent (controller) chooses an

action ak to be applied in current state sk. The agent then receives a
reinforcement signal rk from the environment and the environ-
ment transitions to the next state +sk 1 under action ak, as chosen
by the agent. Transition from state sk to +sk 1 is made as per the
underlying state transition probability ( )+p s s,k k 1 . Agent's aims to
find the optimal policy π π ( ) →s a:k k k k; ∈ ( )a A sk k so as to minimize

expected sum of discounted cost, i.e., { }λ∑ =
∞ +E rj

j k j
0 where +rk j is

the cost incurred j steps into future and λ is the discount factor;
0rλo1.

In Q learning (Wiering and van Otterlo, 2012), Q-value defines
the quality of a state-action pair, and is the total expected dis-
counted cost incurred by a policy, that takes action ∈ ( )a A sk k in
state ∈s Sk and follows the optimal policy in the subsequent
states. Q values implicitly contain information regarding transition
probabilities. For the state-action pair ( )s a,k k , the Q-value is de-
fined as:
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is the state value

� rk¼ Immediate cost of taking action ak at state sk.

Q-values for every state-action pair can be evaluated by con-
sidering (1) as an update rule in an iterative manner. In some RL
domains where system model is not exactly known, implying that
the transition-probabilities ( )+p s a s, ,k k k 1 are unknown, this can't
be implemented. Watkins (Wiering and van Otterlo, 2012) gen-
eralized the above Eq. (1), doing away with the need of an explicit
system model, either in the form of cost structure or transition
probabilities:

}( ) ( ) { ( ) ( )( ) ( )
α λ← + + −

∈ +
+
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k k k
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where, α is the learning rate parameter, 0rαo1; it governs the
degree to which newly acquired information supersedes the ear-
lier information.

Q-learning is guaranteed to converge to optimal Q-values pro-
vided each state-action pair is visited infinitely often and the
learning rate parameter is reduced in a gradual manner. Q learning
can be extended to continuous state-action space problems by
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