
A general Evolutionary Framework for different classes of Critical Node
Problems

Roberto Aringhieri a, Andrea Grosso a, Pierre Hosteins a,n, Rosario Scatamacchia b

a Università degli Studi di Torino, Dipartimento di Informatica, Corso Svizzera, 185-10149 Torino, Italy
b Politecnico di Torino, Dipartimento di Automatica e Informatica, Corso Duca degli Abruzzi, 24-10129 Torino, Italy

a r t i c l e i n f o

Article history:
Received 15 October 2015
Received in revised form
26 May 2016
Accepted 18 June 2016

Keywords:
Evolutionary algorithm
Critical Node Problem
Graph fragmentation
Greedy rules
Connectivity measures

a b s t r a c t

We design a flexible Evolutionary Framework for solving several classes of the Critical Node Problem
(CNP), i.e. the maximal fragmentation of a graph through node deletion, given a measure of connectivity.
The algorithm uses greedy rules in order to lead the search towards good quality solutions during re-
production and mutation phases. Such rules, which are only partially reported in the literature, are
generalised and adapted to the six different formulations of the CNP considered along the paper. The link
between solutions of different CNP formulations is investigated, both quantitatively and qualitatively.
Furthermore, we provide a comparison with best known results when those are available in literature
that confirms the good overall quality of our solutions.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The Critical Node Problem (CNP) is a class of Interdiction Net-
work Problems (Wollmer, 1964; Wood, 1993) that focuses on
maximally fragmenting a graph ()G V E, by deleting a set ⊂S V of
its nodes (and all incident edges on such nodes). This problem is of
interest in a wide range of possible situations, including the
identification of key players in a social network (Borgatti, 2006),
transportation networks' vulnerability (Jenelius et al., 2006),
power grid construction and vulnerability (Salmerón et al., 2004),
homeland security (Brown et al., 2006), telecommunications
(Alevras et al., 1997) or epidemic control (Zhou et al., 2006) and
immunisation strategies (Arulselvan et al., 2009; Cohen et al.,
2003; Ventresca, 2012). A possible application to computational
biology, through the example of protein–protein interaction net-
works, has been suggested in Boginski et al. (2009).

Each domain of application usually defines a specific version of
the problem through the use of a particular connectivity measure.
Moreover, solving real graphs with up to thousands of nodes often
calls for the use of an efficient heuristic algorithm. The contribu-
tion of the approach advocated here is twofold: on one hand, it
provides a global and flexible framework that allows us to deal
with different fragmentation measures. On the other hand, it can
find good quality solutions with limited costs in terms of

algorithmic implementation and computational effort. To the best
of the authors' knowledge, this is the first attempt to develop a
general tool for tackling different classes of the CNP.

We will represent a solution by the set of its deleted nodes S.
The degree of fragmentation of the induced graph [⧹]G V S needs to
be measured by a given connectivity metric. We will consider only
undirected graphs and we denote the set of maximal connected
components as and the cardinality of the said components as | |h
for ∈h .

Many connectivity measures can be devised according to the
type of application desired. We will concentrate on the measures
that take into account the number of remaining connected com-
ponents and their cardinality after the deletion of set S, which is
generally enough to determine which nodes are still able to in-
teract in the remaining network. These measures are defined as
(i) pair-wise connectivity, i.e. the number of pair of nodes con-
nected by a path inside the graph, (ii) the size of the largest con-
nected component and (iii) the number of connected components.
The value of these three measures for a solution set S will be ex-
pressed, respectively, through the following mathematical func-
tions:

() = |{ ∈ ⧹ [⧹]}| ()f S i j V S i j G V S, : and connected by a path in , 1

() = {| | ∈ ([⧹])} ()C S h h G V Smax , , 2

() = | ([⧹])| ()H S G V S . 3

Pair-wise connectivity f(S) can alternatively be expressed in

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2016.06.010
0952-1976/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: roberto.aringhieri@unito.it (R. Aringhieri),

andrea.grosso@unito.it (A. Grosso), hosteins@di.unito.it (P. Hosteins),
rosario.scatamacchia@polito.it (R. Scatamacchia).

Engineering Applications of Artificial Intelligence 55 (2016) 128–145

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.06.010
http://dx.doi.org/10.1016/j.engappai.2016.06.010
http://dx.doi.org/10.1016/j.engappai.2016.06.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.06.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.06.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.06.010&domain=pdf
mailto:roberto.aringhieri@unito.it
mailto:andrea.grosso@unito.it
mailto:hosteins@di.unito.it
mailto:rosario.scatamacchia@polito.it
http://dx.doi.org/10.1016/j.engappai.2016.06.010

terms of the cardinality of the maximal connected components:
() = ∑ ∈

| | (| | −)f S h
h h 1

2
. Even though these measures are all differ-

ent and can lead to very different optimal solutions, as explicitly
demonstrated in Shen and Smith (2012), they are not generally
unrelated. For example the ideal situation for minimising the pair-
wise connectivity is to obtain the largest number of connected
components H(S) with the smallest possible variance in their
cardinality. This implies a minimisation of the size of the largest
component. In practice, this means that disrupting pair-wise
connectivity f(S) is a tradeoff between minimising the cardinality
of the largest component C(S) and maximising the number of
connected components H(S). As the nodes are removed or dis-
abled, we do not count them as single components. An example of
the fragmentation of a small graph is provided in Fig. 1: after the
removal of two nodes (numbers 1 and 2), the graph is split into
two connected components of five nodes each. This solution
corresponds to the optimal solution when trying to either mini-
mise f(S) and C(S) or maximise H(S) by removing at most two
nodes from the graph, with corresponding values: ({ }) =f 1, 2 20,

({ }) =C 1, 2 5 and ({ }) =H 1, 2 2.
Given a connectivity measure, a CNP solution is defined by the

set of deleted nodes and the value of the connectivity metric for
the resulting graph. Depending on the problem at hand, the se-
lection of the nodes can be performed using two complementary
approaches:

� the budget constrained formulation: minimise/maximise the
connectivity under a budget limitation over (| | ≤)S S K ;

� the connectivity constrained formulation: minimise the number
of nodes deleted (| |))S in order to meet a threshold connectivity
value.

For the sake of clarity, we will refer to the problems with the
different connectivity measures f(S), C(S) and H(S) as CNP1, CNP2
and CNP3, respectively. For each problem, we consider the two
variants of the CNP that arise taking into account both the budget
(“a”) and connectivity (“b”) constrained formulations, that is

� CNP1a: minimise f(S) (pair-wise connectivity) subject to | | ≤S K .
� CNP1b: minimise | |S such that () ≤f S P .
� CNP2a: minimise C(S) (cardinality of the largest connected

component of [⧹]G V S) subject to | | ≤S K .
� CNP2b: minimise | |S such that () ≤C S L (L denotes the cardinality

parameter in accordance with notations in Boginski et al., 2009;
Arulselvan et al., 2011; Veremyev et al., 2014a).

� CNP3a: maximise H(S) (number of connected components of
[⧹]G V S) subject to | | ≤S K .

� CNP3b: minimise | |S such that () ≥H S N .

In this paper we will consider the 6 different types of the CNP
problem accordingly to the above taxonomy. Handling each of
these formulations through the use of a single algorithmic fra-
mework is not straightforward. For instance, the VNS algorithm
provided in Aringhieri et al. (2016b) for CNP1a, which provides
good results compared to other heuristics for that problem, is hard
to generalise even to the CNP1b. One main reason is the fact that

finding feasible solutions for “b” types of the CNP is potentially
very difficult, posing a relevant challenge for implementing the
classical shaking procedures in a VNS framework and in general
for the exploration of the solution space. Another important dif-
ficulty concerns the application of local search approaches. In or-
der to improve the objective value of an instance of CNP1b, a local
search procedure should involve a swap of a node from ⧹V S with
at least two nodes from S, which would increase the complexity of
a move by a factor K/2 compared to the “a” version (more details
about local search procedures for the CNP are provided in Section
3.5). Furthermore, the development of efficient neighbourhoods is
also challenging, as discussed in Aringhieri et al. (2016b).

We will demonstrate how our Evolutionary Framework (EF)
can tackle any of the six problems above by using tailored re-
production and mutation operators capable of repairing the solu-
tions through appropriate greedy rules (preliminary results of
such a framework can be found in Aringhieri et al., 2016a). Such
rules can effectively guide the search through the solution space,
in particular when they are properly combined as pointed out by
the previous work of Addis et al. (2016).

Based on the considerations above, the aim of this work is to
provide a simple and easy to implement algorithmic framework
that can tackle many different versions of the CNP by embedding
suitable and efficient greedy rules.

Table 1 reports the main heuristic algorithms in the literature
for the different types of the CNP considered. CNP1a has gained
more attention, while there exists a gap in the literature for the
other five versions. We further extend the analysis of the CNP to
these versions and propose a set of benchmark results which may
constitute an interesting basis for comparison for future
algorithms.

The paper is organised as follows. Section 2 introduces the
greedy rules adopted as well as some greedy algorithms that will
be used for comparison. Section 3 describes a general evolutionary
algorithm for the different types of the CNP as defined above,
embedding the greedy rules defined in Section 2 within the tai-
lored reproduction and mutation operators. Section 4 discusses
the results of the evolutionary algorithm over a set of benchmark
instances and investigates the correlation between solutions of the
different types of the CNP. Finally Section 5 provides conclusions

Fig. 1. Example of a small graph (on the left) fragmented into two connected components (on the right) after the removal of nodes 1 and 2.

Table 1
Heuristic algorithms from the literature for the six types of the CNP considered in
this work.

Type “a” Type “b”

CNP1 Greedy algorithms (Arulselvan
et al., 2009; Ventresca and Ale-
man, 2015; Addis et al., 2016)

Approximation algorithm (Dinh
et al., 2010)

Simulated annealing and PBIL
(Ventresca, 2012)
VNS and ILS (Aringhieri et al.,
2016b)

CNP2 – Greedy and genetic algorithm
(Boginski et al., 2009; Arulselvan
et al., 2011)

CNP3 – –

R. Aringhieri et al. / Engineering Applications of Artificial Intelligence 55 (2016) 128–145 129

Download English Version:

https://daneshyari.com/en/article/380158

Download Persian Version:

https://daneshyari.com/article/380158

Daneshyari.com

https://daneshyari.com/en/article/380158
https://daneshyari.com/article/380158
https://daneshyari.com

