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ABSTRACT

Systems with a priori unknown and time-varying dynamic behavior pose a significant challenge in the
field of Nonlinear Model Predictive Control (NMPC). When both the identification of the nonlinear
system and the optimization of control inputs are done robustly and efficiently, NMPC may be applied to
control such systems. This paper considers stable systems and presents a novel method for adaptive
NMPC, called Adaptive Sampling Based Model Predictive Control (Adaptive SBMPC), that combines a radial
basis function neural network identification algorithm with a nonlinear optimization method based on
graph search. Unlike other NMPC methods, it does not rely on linearizing the system or gradient based
optimization. Instead, it discretizes the input space to the model via pseudo-random sampling and feeds
the sampled inputs through the nonlinear model, producing a searchable graph. For this discretization,
an optimal path is found using Lifelong Planning A*, an efficient graph search method. Adaptive SBMPC is
used in simulation to identify and control a simple plant with clearly visualized nonlinear behavior. In
these simulations, both fixed and time-varying dynamic systems are considered. Results are compared
with an adaptive version of Neural GPC, an existing NMPC algorithm based on Newton-Raphson opti-
mization and a back propagation neural network model. When the cost function exhibits many local
minima, Adaptive SBMPC is successful in finding a low-cost solution that appears close globally optimal
while Neural GPC converges to a solution that is only locally optimal. This paper presents the method,
soundness and completeness theory, and two simulated NMPC examples. The first is a transparent
single-input single-output example, and the second considers a more complex power plant combustion
process with two inputs and three outputs.

© 2016 Published by Elsevier Ltd.

1. Introduction

1999). Drawbacks of currently used Newton-type methods include
the computational expense of computing first and second deri-

Model predictive control (MPC) is widely used in industry (Qin
and Badgwell, 1997; Janakiraman et al., 2016; Ptaczek, 2014), and
although most MPC implementations use linear models, nonlinear
models allow for better performance over a wider operating range
(Berber and Kravaris, 1998; Grancharova and Johansen, 2012; Zhao
et al., 2001; Henson, 1998). Furthermore, adaptive implementa-
tions of Nonlinear MPC (NMPC), which assume a stable plant as
considered in this paper, provide the additional benefit of enabling
the model to be updated as plant dynamics change. Several NMPC
techniques have been developed by extending existing linear MPC
techniques to handle plants with strong nonlinearities (Qin and
Badgwell, 1997; Soloway and Haley, 1996; Bemporad and Morari,
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vatives, possible convergence to local minima that are globally
suboptimal, and a lack of robustness due to overly fine tuning
requirements. An adaptive approach to NMPC, Adaptive Sampling
Based Model Predictive Control (Adaptive SBMPC) is first pre-
sented in Reese and Collins (2014). Here, we go beyond the pre-
vious research by providing more algorithm detail, a theoretical
derivation of completeness, a comparison to the adaptive form of
an existing NMPC method, and new simulation results.

Adaptive SBMPC is not an extension of a linear MPC technique;
instead, it applies an optimization method that does not require
gradient computations. The method is based on input sampling
(Dunlap et al., 2010, 2011a,b), which here refers to the pseudor-
andom or low-correspondence discretization of a continuous set.
In input sampling, the space of all valid input vectors is sampled,
yielding a set of discrete input vectors that are used to represent
the space. Sampling in this sense is not to be confused with the
concept of (usually periodic) time sampling in a sampled-data
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system. The method may be used generally with any input-output
model and does not inherently prefer linear or nonlinear models.
This paper presents a comparison to an adaptive form of Neural
GPC (Soloway and Haley, 1996) using both an transparent and
simple example (results Cases 1, 2, and 3) and an application to a
real world problem, the regulation of emissions for a simulated
coal-burning power plant (results Cases 4 and 5).

The Generalized Predictive Control (GPC) method (Clarke, 1987)
was the first to merge adaptive control techniques with MPC. GPC
handles plants with changing dynamics by using an adaptive lin-
ear model and performs well despite unknown time delays, which
is in general an advantage of MPC approaches. One particular
disadvantage of GPC over other MPC methods is that there is no
guarantee that hard input and output constraints will be satisfied.
Although Clarke mentions the potential of modification to handle
constraints, neither the original GPC nor any of the nonlinear GPC
extensions mentioned below guarantee constraint satisfaction.

When implementing MPC, the model that is used for prediction
is obtained in one of the several ways. While some take the model
to be specified a priori (Diehl et al., 2006; Hovorka et al., 2004;
Karampoorian and Mohseni, 2010), it is often practical to perform
system identification and fit a model from observed input-output
behavior (Clarke, 1987).

Linear MPC techniques often use a Least-Squares, Gradient
Descent, or Newton method to fit a linear model to observed data
(Qin and Badgwell, 1997). Nonlinear MPC techniques, which are far
less commonly used, often fit a Neural Network, Neuro-Fuzzy,
Nonlinear Polynomial, or other Nonlinear State Space model to
predict system behavior (Qin and Badgwell, 2003). This paper fo-
cuses on techniques using the neural network pattern recognition
paradigm, which is useful for representing general nonlinear sys-
tem behavior. Neural networks achieve this by using computa-
tional building blocks called hidden units or neurons. It is possible
to capture the behavior of a nonlinear plant by training and up-
dating a neural network to predict the future response of the
system based on past observations.

GPC has been extended to nonlinear systems using neural
network models, yielding one of the first and most widely used
adaptive NMPC algorithms, Neural GPC (Soloway and Haley, 1996).
As illustrated in Fig. 1, this method consists of an identification
phase, using a Back Propagation Network (BPN), and an MPC op-
timization phase using Newton's method. The cost function J is
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Fig. 1. Block diagram of Neural GPC. The control task is to provide inputs u to the
plant such that outputs y match a reference trajectory r. The two way switch allows
the neural network model to be identified online and the MPC control optimization
to be recomputed at each time step using the latest model parameters.

minimized, using computed gradient and Hessian values to seek a
locally optimal sequence of inputs. Constraint and damping terms
are added to the GPC cost function to penalize input constraint
violations and avoid potential instability of the Newton's method
solver.

Neural GPC enables control of a multiple-input multiple-output
(MIMO) plant. However, in prior publications, each implementa-
tion fixed the neural network parameters after the learning phase
ends. Hence, although the formulation of Neural GPC allows for
adaptation, the research in published literature did not perform
adaptive control. Neural GPC has been applied experimentally to a
single-input single-output (SISO) nonlinear magnetic levitation
system using a network with only three computational units in the
hidden layer (Haley et al., 1999). For this paper, Neural GPC is
implemented for comparison to the proposed algorithm. In this
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Fig. 2. Block diagram of Adaptive SBMPC. The control task is to provide inputs u to
the plant such that outputs y match a reference trajectory r. The neural network
model is identified online, and as candidate input trajectories u* are provided by
SBMPO to the neural network, their corresponding predicted outputs )A/* are
returned.

Fig. 3. The structure of an RBF Neural Network with four hidden units. Each hidden
unit ¢; evaluates a Gaussian function centered at basis vector pj, which has di-
mension equal to the vector x of network inputs. Each output y; is an affine function
of the ¢.
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