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a b s t r a c t

We introduce a method to enhance the inference of meaningful dynamic models from observational data
by genetic programming (GP). This method incorporates an inheritable epigenetic layer that specifies
active and inactive genes for a more effective local search of the model structure space. We define several
GP implementations using different features of epigenetics, such as passive structure, phenotypic plas-
ticity, and inheritable gene regulation. To test these implementations, we use hundreds of data sets
generated from nonlinear ordinary differential equations (ODEs) in several fields of engineering and from
randomly constructed nonlinear ODE models. The results indicate that epigenetic hill climbing con-
sistently produces more compact dynamic equations with better fitness values, and that it identifies the
exact solution of the system more often, validating the categorical improvement of GP by epigenetic local
search. The results further indicate that when faced with complex dynamics, epigenetic hill climbing
reduces the computational effort required to infer the correct underlying dynamics. We then apply the
method to the identification of three real-world systems: a cascaded tanks system, a chemical distillation
tower, and an industrial wind turbine. We analyze its solutions in comparison to theoretical and black-
box approaches in terms of accuracy and intelligibility. Finally, we analyze population homology to
evaluate the efficiency of the method. The results indicate that the epigenetic implementations provide
protection from premature convergence by maintaining diversity in silenced portions of programs.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A major goal of science is to characterize analytically the dy-
namic behavior of natural phenomena associated with biological,
ecological, social, and economic systems, as well as the dynamics
of artifacts such as wind turbines, robots, and aircraft. Dynamic
behaviors are usually characterized by differential equations
which in aggregate represent the dynamic model of the system.
These dynamic models are the essence of the simulations that
estimate/predict system behavior for policy decisions, design,
optimization, control, and/or automation. This paper presents a
method for construction of concise and mechanistically mean-
ingful dynamic models from observations.

Dynamic models are preferably formulated according to first
principles, to embody the knowledge of the process. However,
first-principles models cannot often fully characterize the non-
linear dynamics of the process, as represented by process ob-
servations. In regress, first-principles models may be abandoned in

favor of empirical models such as neural networks (Narendra and
Parthasarathy, 1990; Gregorčič and Lightbody, 2008), linear or
nonlinear autoregressive moving average (ARMAX) models (Ljung,
1999; Billings, 2013), or others (Ni et al., 1996; Sadollah et al.,
2015), that have the structural flexibility to accommodate the
measured process observations. Although these empirical models
provide an effective basis for estimation/prediction, they have two
major drawbacks. One is their ‘black-box’ format which obscures
the knowledge of the process acquired through adaptation. The
second is their case-specificity which makes them potentially
deficient in representing the process under conditions (inputs) not
encompassed by the measured observations. To remedy the black-
box nature of these empirical models, dynamic models consisting
of differential equations can be defined in algebraic form by
symbolic regression (Gray et al., 1998; Cao et al., 2000; Bongard
and Lipson, 2007), wherein both the structure (topology) and
parameters (constants) are inferred from measured observations.
Since these symbolic models are intelligible, they have the capa-
city to elucidate the process physics. Symbolic regression is typi-
cally conducted using genetic programming (GP) (Koza, 1992),
which is a bio-inspired machine learning technique that
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constructs candidate models from mathematical building blocks
and proceeds with selection, recombination and mutation over
several generations before converging on a model that best fits the
process observations.

In comparison to system identification methods that presume
fixed model structures, symbolic regression can be computation-
ally expensive because of its expanded search space. Furthermore,
when guided solely by an error metric, it can yield unwieldy
equations that are elusive to physical interpretation. To remedy
these shortcomings, this paper introduces a new method of
symbolic regression that fine-tunes candidate model structures by
local search (La Cava et al., 2015). This fine tuning is enabled by the
addition of an epigenetic layer for selection of program compo-
nents (consisting of variables and instructions) to be included in
the model. The incorporation of this epigenetic layer is motivated
by two hypotheses: first, that the benefits of epigenetic regulation
observed in biology may confer analogous improvements on GP
systems; and second, that generalized local search methods en-
abled by epigenetics may improve the ability of GP to find correct
model structures.

As to the first hypothesis, despite the highly regulated nature of
biological genes, the role of epigenetics in regulating gene ex-
pressions is traditionally ignored in GP (with some exceptions, e.g.
(Ferreira, 2001)). However, epigenetic processes may provide
several evolutionary benefits. For example, because epigenetic
processes allow the underlying genotype to encode various ex-
pressions and lead to neutral variation through crossover and
mutation of non-coding segments, they may allow populations to
avoid evolutionary bottlenecks or let them respond to changing
evolutionary pressures (Jablonka and Lamb, 2002). Also, because
they provide for phenotypic plasticity that enables gene expres-
sion to change in response to environmental pressure (Dias and
Ressler, 2013), they may allow gene expression adaptations to be
inherited in offspring without explicit changes to the genotype.
This property legitimizes, via epigenetic processes, once dis-
credited ideas of Lamarck pertaining to the inheritability of life-
time adaptations (Jablonka and Lamb, 2002; Holliday, 2006).

Regarding the second hypothesis, although local search meth-
ods have been developed and integrated into evolutionary algo-
rithms (Gruau and Whitley, 1993; Whitley et al., 1994; Jeong and
Lee, 1996; Ross, 1999; Giraud-Carrier, 2002), especially in genetic
algorithms (GAs) through prescribed changes to the genotype, the
role of structure optimization in symbolic regression is typically
left to the GP process. Aside from some recent developments
(Arnaldo et al., 2014), local search is traditionally conducted at the
genome level. More generic local search methods, like tree snip-
ping (Bongard and Lipson, 2007), focus on improving secondary
metrics like size or legibility, whereas the traditional search
methods, like stochastic hill-climbing (Bongard and Lipson, 2007),
linear (Iba and Sato, 1994) or non-linear regression (Topchy and
Punch, 2001) are confined to constant optimization. Although
these local search methods improve symbolic regression perfor-
mance, they cannot aid the search for program topology.

Epigenetics, on the other hand, provide a natural basis for
performing local search at the structural (i.e., program topology)
level. Motivated by this benefit of epigenetics, we introduce in this
paper an epigenetics-enabled GP system to conduct topological
optimization of programs at the level of gene expression. The
contributions of this method are twofold: first, it introduces a
generic method of topological search of the space of individual
genotypes via modifications to gene expression. Second, it im-
proves programs without affecting the genotype and without
discarding the acquired knowledge gained through evolution,
thereby lowering the risk of premature convergence observed in
previous studies (Whitley et al., 1994). These contributions are
achieved by conducting local search on the epigenome rather than

the genome and making these adaptations inheritable via evolu-
tionary processes.

The proposed Epigenetic Linear Genetic Programming (ELGP)
method is tested on a large array of data generated from nonlinear
ordinary differential equations (ODEs), as well as from three real-
world processes, to evaluate the quality of its solutions. The paper
is organized as follows. We formulate in Section 2 the identifica-
tion problem and describe in Section 3 the ELGP method and its
application to inference of dynamic models. We also review the
relevant work in the context of GP and nonlinear dynamics
modeling in Section 4. We then present the experimental analysis
of different epigenetic implementations on a series of increasingly
complex problems in Section 5. We begin by testing the method
on a large set of data obtained from simulated nonlinear ODEs in
different engineering fields, in order to illustrate its breadth of
application. We then perform identification on hundreds of ran-
domly constructed nonlinear systems, varying in complexity and
dimensionality, to evaluate the scalability of the method in com-
parison to traditional GP approaches. Finally, we apply the ELGP
method to three real-world problems, including the identification
of (1) a benchmark cascaded tanks system (Wigren and Schou-
kens, 2013), (2) a chemical distillation tower, and (3) an industrial
wind turbine. The results are presented in Section 6 and include
comparisons of ELGP's performance in relation to other linear and
nonlinear identification methods. We finish this discussion with
an analysis of population diversity to study how gene expression
evolves for each ELGP implementation.

2. Problem statement

The underlying assumption of symbolic regression is that there
exists an analytical model of the system that would generate the
measured observations ( )y tk at the sample times = …t t t, ,k N1

under the input, ( )tu , as

νΘ( ) = ^ ( *( *)) + = … ( )y t y t M k Nu x u, , , , ; 1, , 1k k

where ŷ is the model output, ν represents measurement noise in
y, = [ … ]x xx , , n

T
1 is the vector of state variables, and Θ*( *)M x u, , is

the correct model form embodied by the correct parameter values
Θ*, written *M hereafter for brevity. In the search for the correct
model form M*, GP typically attempts to solve the problem

S( ) ∈ ( )f M Mminimize subject to 2

where S is the space of possible models M, and f denotes a
minimized fitness function. Given that it is impractical to ex-
haustively search S, the model found to minimize f(M) may only
be locally optimal. For practical purposes it is assumed that a sub-
optimal model can nevertheless fulfill the purpose of adequately
representing the process, as depicted by the measured
observations.

A common choice for estimating a candidate model output
^ ( )y M is numerical integration or simulation of the state variables,
i.e. the “output error” method (Ljung, 1999). However, given the
sensitivity of simulation to different model structures (La Cava and
Danai, 2015) and the computational cost of numerical integration,
the alternative approach of algebraically estimating candidate
model outputs is preferred for symbolic regression (Bongard and
Lipson, 2007; Schmidt and Lipson, 2009). In the algebraic ap-
proach, un-measured states, denoted x̃ , are estimated from mea-
surements via numerical differentiation together with smoothing
functions. In the case of first-order differential equations with un-
measured state derivatives, the target is estimated numerically as

( ) = ̇˜y t xu,k , such that the prediction error of a candidate model
has the form
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