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a b s t r a c t

Human guide robots usually generate desired trajectories from human demonstrations. The training
process can be in task space or joint space. The task space method needs the inverse kinematics; the joint
space method uses dynamic time warping. Both of them destroy the accuracy of the generated trajectory.

In this paper, we first use Lloyd's algorithm to encode the input signals such that the observations are
time-independent. The desired trajectory is generated in joint space without dynamic time warping.
Then we modify the hidden Markov model (HMM) such that it can work in joint space. Since the desired
trajectories are the joint angles, they can be applied directly to robot control without calculating the
inverse kinematics. Simulation and experimental results show that the modified HMM with Lloyd's al-
gorithm work well in joint space.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The control structure of many human guide robots, such as
robot exoskeleton, humanoid robot, and surgical robot, has three
levels: joint angle tracking, trajectory planning, and path planning,
see Fig. 1. The path planning is in task space. It generates a path
from a starting-point to an ending-point with respect to some
restrictions. The trajectory planning can be in task space or joint
space. It gives the desired trajectories of the end-effector (task
space), or desired joint angles (joint space), which are in the path
generated by the path planning. The joint angle tracking usually
uses PD/PID controller to force the joints to follow the desired
angles generated by the trajectory planning.

The final problem of this control structure is to generate de-
sired joint angles which satisfy human requirements (Xu and Lee,
2005). This is the object of transferring human skill to the robot
through demonstrations. We also call it programming by demon-
stration (PbD) or learning from demonstration (LfD) (Argalla et al.,
2009). The robot trajectory generation can be broadly divided into
two trends: (1) Symbolic level. The human skill is decomposed
into a sequence of action–perception units, then a statistical model
is used to deal with the demonstrations (Hersch et al., 2008;
Billard et al., 2007). (2) Trajectories level. A nonlinear mapping is
used to model the sensor/motor information. The trajectories level
method is robust to the environment changes (Ijspeert et al.,

2012). The symbolic level method is suitable to model complex
human actions. In this paper we use the symbolic level method.

Although the trajectory planning in joint space can avoid the
calculation of the inverse kinematics, the demonstrations in joint
space are time-dependent. Fig. 2 shows the trajectories in joint
space and task space, when a two-link planar robot draws a bro-
ken line. Since the trajectories in task space only give space rela-
tion, the three lines overlap in task space. However, in joint space
they are complete different because of different drawing speeds. In
this sense, training in task space is easier than in joint space
(Vakanski et al., 2012; Kuniyoshia et al., 2004; Wang et al., 2013;
Gribovskaya et al., 2011). After the training in task space, the in-
verse kinematics need to be solved, which requires complete
knowledge of the robot.

There are few works in joint space (Berg et al., 2010; Peters and
Schaal, 2008). The dynamic time warping (DTW) is an effective
tool to deal with the time-dependent problem. The computation
time for one-dimensional signals, such as time series, is in poly-
nomial. The extension of DTW for more than two-dimension, like
robots, becomes NP-complete. The accuracy of the high dimension
approximation is also very low (Sakoe and Chiba, 1978).

Statistical learning techniques deal with the high variability
inherent in the demonstrations. They are not sensitive to dis-
turbances. For instance, spline smoothing technique can deal with
the uncertainty in several motion demonstrations (Ude, 1993). The
mean and variance of the collected variables are applied in Oga-
wara et al. (2003) to generate a model. Ito et al. (2006) realizes
online imitation by encoding two different motor loops.

Hidden Markov Model (HMM) generates a sequence which is
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called Markov chain (Rabiner, 1989; Yang et al., 1997). It can en-
code the motion of a robot, and find the highest probability state
path by Viterbi algorithm (Viterbi, 1967). HMMs use finite Gaus-
sian mixture models as their hidden state distributions. The
Gaussian mixture model can encode a set of trajectories (Argalla
et al., 2009). The Gaussian mixture regression can retrieve a
smooth trajectory from several demonstrations (Billard et al.,
2007). There are many successful application of robot trajectory
generation via HMM (Yang et al., 1997; Kwon and Park, 2008).
HMM offers many advantages over the other statistical models for
human behavior modeling, such as better compression, variant
structures, and training incrementally. One weakness of HMM is
that the trajectory generation can only use current state for the
emission and the transition probabilities. HMM does not map well
to many time-dependent domains, such as joint space (Mohamed
and Gader, 2000).

To train HMM, it is necessary to map continuous trajectories
into discrete values, named codebook. It is impossible to use all
sampled data to train HMM. The key-points include necessary
information for HMM. The normal method of selecting the key-
points uses the shape of the trajectory. It can be positions eva-
luation (Yang et al., 1997) or position/velocity evaluation (Vakanski
et al., 2012). Linde–Buzo–Gray (LBG) is the most popular method.
The above methods do not work well in joint space, because the
trajectories in joint space are time-dependent, while these meth-
ods use the shape information (Gernot, 2008). Lloyd's algorithm
partitions data into well-shaped and uniformly sized convex cells
(Lloyd, 1982). It repeatedly finds the centroid of each set in the
partition using Voronoi diagrams. In this paper, we use Lloyd's
algorithm to avoid the following two problems: (1) calculation
problem of the dynamic time warping in joint space, (2) selection

problems of the codebook and key-points in joint space. The
classical HMM is also modified such that it is more feasible to
generate joint trajectory. A new element is introduced for HMM.

In order to generate the desired robot trajectory, this paper
proposes a different method from the previous works like inverse
kinematics and dynamic time warping. The contributions of the
paper include three parts:

1. The classical HMM is modified such that it is more feasible to
generate trajectory in joint space. We introduce a new auxiliary
output in HMM to help training process.

2. The Lloyd's algorithm is modified for HMM, such that it can
solve the problems in joint space learning.

3. The proposed method is validated with a two-link planar robot
and a four degree-of-freedom (4-DoF) exoskeleton robot (Gar-
rido et al., 2016).

2. Codebook and key-points generation

The dynamics of a −n link robot in joint space can be written as

τ( ) ¨ + ( ˙) ˙ + ( ) + ( ˙) = ( )M q q c q q q g q F q, 1

where R∈q n denotes the links angles, R˙ ∈q n denotes the links
velocity, R( ) ∈ ×M q n n is the inertia matrix, R( ˙) ∈ ×c q q, n n is the
centripetal and Coriolis matrix, R( ) ∈g q n is the gravity vector,
R∈F n is the frictional terms, and Rτ ∈ n is the input control

vector.
The object of this paper is to generate the desired trajectory qn

from the demonstrations in the joint space = [ ⋯ ]Q Q Q ,n
T

1

= [ ⋯ ]Q X Xi i i
m T1 . Here the trajectory Xi

r defines i-th joint and r-th
trajectory, it is defined as = { ( )} = ⋯X q l l T, 1 ,i

r
i i

r Ti
r is the total

sample number of the joint angles. There are m trajectories for
each joint. The trajectory number m is not necessary large, because
human cannot repeat the same motion so many times and this
may cause repeat calculation in HMM. The data length Ti

r is dif-
ferent from one demonstration to another, because of difference
speed, and start/ending time.

Each joint for each demonstration has its own codebook de-
fined as = …C i n, 1i . A codebook can be regarded as an Ni di-
mension vector, i.e., = [ ⋯ ]C c ci i iN

T
1 i

. The codebook dimension Ni is
selected by prior knowledge of the trajectories geometry.

In this paper we use Lloyd's algorithm to train the codebook
( )C ti , here t is the training times. The initial codebook is defined as
( )C 1i . A bad initial condition may reach local minima. A heuristics

method (Zafra and Pechenizkiy, 2013) is used to find a better ( )C 1i .
Since the heuristics method needs a lot time, ( )C 1i can also be
selected randomly from X .i

r

The objective of using Lloyd's algorithm to create the codebook
is to minimize a quantization error with certain data distribution.
We need nearest-neighbor and centroid conditions which are
commonly used in Lloyd's algorithm. For one point ( )q li 1 in the
trajectory, we want to find the nearest codebook element by cal-
culating

| ( ) − | = ⋯ = ⋯
( )≤ ≤

q l c l T i nmin , 1 , 1
2j N i ij

1
1 1

If the nearest codebook element is cik, the region Rij
( = ⋯ = ⋯i n j N1 , 1 i) is defined as

= { ( )} = [ ⋯ ] = ⋯ ( )R q l r r k s, 1 3ik i ik ikp i
r

1 1 ik

where pik is the length of the region Rik, si
r is the region number of

the joint i and the demonstration r .
Obviously, the center of the region Rij is should be cij. The new

center of Rij can be calculated as
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Fig. 1. Control structure of a human guide robot.

Fig. 2. A two-link planar robot draws a broken in joint space and task space.
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