
Probabilistic logical approach for testing diagnosability of stochastic
discrete event systems

Xuena Geng a,b, Dantong Ouyang a,b,n, Xiangfu Zhao c, Shuang Hao a,b

a Key Laboratory of Symbolic Computation and Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China
b College of Computer Science and Technology, Jilin University, Changchun, China
c College of Mathematics, Physics, and Information Engineering, Zhejiang Normal University, Jinhua, China

a r t i c l e i n f o

Article history:
Received 5 January 2016
Received in revised form
25 March 2016
Accepted 27 March 2016
Available online 13 April 2016

Keywords:
Fault diagnosis
Stochastic discrete event system
Logical diagnoser
Logical diagnosability
A-diagnosability
AA-diagnosability

a b s t r a c t

Fault diagnosis plays an important role in the prevention of harmful events in discrete event systems
(DESs). Stochastic DES (SDES) is a more precise formulation of DES. In this paper, a novel approach that
uses probabilistic logic to diagnose SDES is investigated. SDES is formalized as a set of probabilistic logical
formulas. Moreover, a logical diagnoser is presented. Fault diagnosis of SDES has two properties: A-di-
agnosability and AA-diagnosability. On the basis of resolution principle, an algorithm is proposed to test
A-diagnosability and AA-diagnosability of the SDES. Experimental results demonstrate that our algorithm
improves the accuracy and efficiency of verifying diagnosability of SDES.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete event system (DES) is a discrete-state, event-driven
system, the states evolution of which depends entirely on the
occurrence of asynchronous discrete events over time. However,
the states and events of DESs are not sufficiently accurate in most
engineering applications. To deal with the diagnosis problem of
DESs precisely, stochastic discrete event systems (SDESs) were
proposed by Lunze and Schroder (2001). Thereafter, many other
works on fault diagnosis of SDES were proposed (Thorsley and
Teneketzis, 2005; Chen and Kumar, 2013; Liu and Qiu, 2008; Chen
and Kumar, 2013; Liu et al., 2008).

In recent years, the detection of failure events in DES has re-
ceived considerable attention to guarantee the performance of a
reliable system. Diagnosability is an important property in fault
diagnosis. Verifying diagnosability of a system, which was pro-
posed in the 1990s (Sampath et al., 1995, 1996), is crucial. Diag-
nosability property refers to the ability to detect the occurrence of
failure events on the basis of observations and using model-based
inferencing. In Sampath et al. (1995), the complexity of the
method of testing diagnosability is exponential in the number of
states of the system and doubly exponential in the number of

failure types. To improve efficiency of verifying the diagnosability,
Jiang proposed a twin-plant method, whose complexity is of
fourth-order in the number of states of the system and linear in
the number of the failure types, to diagnose the DES (Jiang et al.,
2001). Pencole (2004) and Debouk et al. (2000) extended the di-
agnosis to the DESs with decentralized information. Carlos et al.
(2012), Lafortune et al. (2001), and Li et al. (2014) improved the
efficiency of diagnosability.

Considering that DES cannot distinguish highly probable and
less probable strings or states, A-diagnosability and AA-diagno-
sability of SDES were proposed (Thorsley and Teneketzis, 2005).
Let logical diagnosability represent diagnosability in DES. The
condition for logical diagnosability, A-diagnosability, and AA-di-
agnosability has a digressive stringency. In Thorsley and Tene-
ketzis (2005), a necessary and sufficient condition for A-diagno-
sability and a sufficient condition for AA-diagnosability were
proposed. Both algorithms are exponential in the number of states.
In Chen and Kumar (2013), a polynomial complexity test for
checking A-diagnosability and AA-diagnosability was proposed.
The algorithm in Chen and Kumar (2013) uses the twin-plant
structure and is similar to the method in Jiang et al. (2001). The
complexity of the algorithm is of sixth-order in the number of
states. After Thorsley and Teneketzis (2005) and Chen and Kumar
(2013), some approaches of testing diagnosability of SDES were
proposed, including Liu and Qiu (2008), Chen and Kumar (2013),
and Liu et al. (2008). Liu and Qiu (2008) defined safe diagnosa-
bility for SDES, in which failure detection occurs before any given

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2016.03.008
0952-1976/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author at: Key Laboratory of Symbolic Computation and
Knowledge Engineering, Ministry of Education, Jilin University, Changchun, China.

E-mail address: ouyangdantong@163.com (D. Ouyang).

Engineering Applications of Artificial Intelligence 53 (2016) 53–61

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.03.008
http://dx.doi.org/10.1016/j.engappai.2016.03.008
http://dx.doi.org/10.1016/j.engappai.2016.03.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.008&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.03.008&domain=pdf
mailto:ouyangdantong@163.com
http://dx.doi.org/10.1016/j.engappai.2016.03.008

forbidden string in the failed mode of system is executed. Liu et al.
(2008) and Chen and Kumar (2013) extended the decentralized
failure diagnosis to SDES. Decentralized failure diagnosis is more
efficiency than centralized diagnosis in DES. Similarly, decen-
tralized failure diagnosis of SDES also performs better than cen-
tralized failure diagnosis in SDES. However, the main ideas of
these methods are based on Thorsley and Teneketzis (2005) and
Chen and Kumar (2013). The performance of the algorithms in
Thorsley and Teneketzis (2005) and Chen and Kumar (2013) was
not sufficiently satisfactory. Therefore, we propose a novel ap-
proach to verify diagnosability of the SDESs.

Testing diagnosability is a path-finding problem. An efficient
approach to solve a path-finding problem, such as AI planning
(Kautz and Selman, 1996) and model-checking (Biere et al., 1999),
is to reduce them to propositional logic problems (Zhao and
Ouyang, 2009, 2015). This approach is similar to diagnosability
testing, which is what we are pursuing in this paper. Therefore, we
use logical expressions to present SDES and propose a logical di-
agnoser to test A-diagnosability and AA-diagnosability of the
SDESs in this paper. Our algorithm can achieve diagnosability di-
rectly and avoid any synchronization operations. Consequently,
our algorithm is less costly than the previous methods.

The contributions of this paper are three-fold. First, we present
the SDES by using logical expressions. Second, we propose an algo-
rithm to construct a logical diagnoser, i.e., using logical formulas to
present a diagnoser. Third, we propose an algorithm to test diagno-
sability of the SDES on the basis of resolution principle in proposi-
tional logic. Examples and comparisons are given in this paper to
illustrate the efficiency and accuracy of the proposed algorithms.

This paper is organized as follows. Some definitions and fre-
quently used terms are introduced in Section 2. In Section 3, we
construct the logical diagnoser. We present the algorithms of
testing A-diagnosability and AA-diagnosability in Section 4. In
section 5, we apply our algorithms to the system heating, venti-
lation, and air-conditioning (HVAC). Section 6 shows the experi-
ment results. Finally, Section 7 presents a summary of the results
in the paper and gives the concluding remarks.

2. Preliminaries

Some definitions and terms of logical expression and diagnosis
are presented in this section.

A literal is either a variable l or its negation ¬l. Symbol “ ∨”
represents logical OR of the literals, and symbol “ ∧” represents
logical AND of the literals. A clause is the logical OR of one or more
literals. For example, x, y, and z are three variables. (∨ ¬)x y and
(∨)x z are two clauses.

A DES is usually modeled as a finite state automaton (FSA)
defined in Sampath et al. (1995).

Definition 1 (FSA). An FSA is defined as a tuple Σ= ()G X T x, , , 0 ,
where X is the state space, Σ is the set of events, Σ⊆ × ×T X X is the
partial transition function, and x0 is the initial state of the system.

The event set Σ is partitioned as Σ Σ Σ= ∪o uo, where Σo and Σ
uo denote the sets of observable and unobservable events, re-
spectively. Note that Σ Σ Σ⊆ ⊆f uo denotes the set of failure events
to be diagnosed. Observable events can be directly detected by the
sensors; hence, failure events are supposed to be unobservable.
Let Σ⁎ denote the set of all sequences formed by events in Σ. The
behavior of the system is described by the prefix-closed language
L, where L is a subset of Σ⁎. A path denotes an arbitrary element of
L. A trace is a special path that begins from the initial state of G and
ends with the infinite loop of G. Suppose t is a trace of G, projec-
tion Pj(t) removes the unobservable events from t. The inverse

operation of projection is () = { ∈ () = }−Pj s s L Pj s s:L
1

0 0 . L s/ denotes
the set of possible continuations of a path s. | |s represents the
number of events in s.

We treat the abnormal behaviors in the system as failure
events. Since the abnormal behaviors are different in the system,
the set of failure events can be partitioned into disjoint sets that
correspond to different failure types, i.e., Σ Σ Σ= ∪ … ∪f f fm1 . Let sf
denote the final event of a path s. Define

Φ Σ Σ() = { ∈ ∈ } ()s L s: . 1f f fi i

The result of function Φ Σ()fi represents the set of paths whose
final event is the failure event of a specific type. Hereafter, Fi de-
notes the failure events whose type is Σ fi. For the sake of simpli-
city, we introduce our algorithms by the systems with only a single
failure type. In Section 5, we extend our algorithms to multiple
failure types.

In FSA, a transition between x and ′x is presented as
() = ′tran x e x, , where ′ ∈x x X, , and Σ∈e , and indicates that ′x is

reachable from x driven by event e. Furthermore, the transition
function can be extended to the sequence of events as follows:

() = (()) ()tran x se tran tran x s e, , , . 2

SDES is usually modeled as a stochastic automaton (SA), which
is an FSA with probabilistic structure.

Definition 2 (SA Thorsley and Teneketzis, 2005). An SA is defined
as a tuple Σ= ()G X P x, , ,s 0 , where X is the state space, Σ is the set
of events, Σ× × → []P X X: 0, 1 is the partial state transition
probability function, and x0 is the initial state of the SDES.

In SA, X, Σ, and x0 are the same as those in FSA. The difference
between FSA and SA is that FSA has a set of transition functions T
instead of P in SA. In SA, (′ |)p x e x, is a state transition probability
defined for () = ′tran x e x, in FSA. The value of (′ |)p x e x, is the
probability of the system evolution from x to ′x driven by event e.
Therefore, each SA corresponds to an FSA by erasing the prob-
ability of the transition function. In this paper, let Gs represent an
SA, and let G represent Gs's framework of FSA.

In order to facilitate the solution to the diagnosis problems, we
formulate three assumptions about the transition probability
(Thorsley and Teneketzis, 2005; Sampath et al., 1995):

(1) At most one ′ ∈x X exists, such that (′ |) >p x e x, 0 for a given
∈x X and a given Σ∈e .

(2) For every state in X, the probability of a transition occurring
from that state is one or, equivalently, for ∀ ∈x X

∑ ∑ (′ |) =
()Σ′∈ ∈

p x e x, 1.
3x X e

(3) There does not exist any cycle of unobservable events, i.e.,

Σ(∃ ∈)(∀ ∈)[(∈) ⇒ | | ≤] ()⁎n ust L s s n 4uo0 0

Intuitively, assumptions (1) and (2) indicate that transitions
will continue to occur in any state. Assumption (3) ensures that
the DES does not exist an arbitrarily long trace of unobservable
events.

Example 1. Consider the SA Gs1 shown in Fig. 1. () =tran b2, 3 is a
transition of G1. (|) =p b3, 2 0.1 is the transition probability of

() =tran b2, 3. In Fig. 1, three traces in Gs1 exist, i.e., σ σ⁎ ⁎a a,uo f , and
σ ⁎ ⁎a bf . The projection of trace σ ⁎af is an. The inverse projection of
an is σ σ(+)⁎ ⁎a auo f .

Transition probability can also be extended to the path. Before
computing the probability of a sequence, we introduce a calcula-
tion rule.

X. Geng et al. / Engineering Applications of Artificial Intelligence 53 (2016) 53–6154

Download English Version:

https://daneshyari.com/en/article/380176

Download Persian Version:

https://daneshyari.com/article/380176

Daneshyari.com

https://daneshyari.com/en/article/380176
https://daneshyari.com/article/380176
https://daneshyari.com

