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a b s t r a c t

This paper proposes new methods for modeling unstructured uncertainties and robust controlling of
unknown nonlinear dynamic systems by using a novel robust Takagi Sugeno fuzzy controller (RTSFC).
First, a new training algorithm for an interval type-2 fuzzy basis function network (FBFN) is proposed.
Next, a novel technique is presented to convert the interval type-2 FBFN to an interval type-2 Takagi
Sugeno (TS) fuzzy model. Based on the interval type-2 TS and type-2 FBFN models, a robust controller is
presented with an adjustable convergence rate. Since the type-2 fuzzy model with its new training
technique can effectively capture the unstructured uncertainties and accurately estimate the upper and
lower bounds of unknown nonlinear dynamic systems, the stability condition of the proposed control
system is much less conservative than other robust control methods that are based on norm bounded
uncertainties. Simulation results on an electrohydraulic actuator show that the RTSFC can reduce steady
state error under different conditions while maintaining better responses than the other robust sliding
mode controllers.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

For unknown dynamic systems, many robust adaptive control
techniques have been proposed based on the parameters of a uni-
versal approximator (Lee and Tomizuka, 2000; Lee, 2011). Goyal
et al. (2015) introduced a robust sliding mode control based on
Chebyshev neural networks. Chadli and Guerra (2012) proposed a
robust static output feedback for a discrete Takagi–Sugeno (TS)
fuzzy system. The stability conditions in their studies are re-
presented in terms of a set of linear matrix inequalities (LMI) con-
ditions. An observer-based output feedback nonlinear robust control
of nonlinear systems with parametric uncertainties were introduced
by Yao et al. (2014a) to provide a sufficient condition for robust
stabilization of the systems when all state variables are not available
for measurement. By using a Lyapunov–Krasovskii function (LKF),
Hu et al. (2012) introduced a stability condition to stabilize discrete
stochastic systems with mixed time delays, randomly occurring
uncertainties, and randomly occurring nonlinearities. However,
since these methods represented uncertainties as functions of sys-
tem parameters, they are not applicable for cases where the causes
of uncertainties are not known (unstructured uncertainties).

In general, most of the papers in the literature only investigate
the stability of fuzzy control systems with structured uncertainties
(Lee et al., 2001; Lin et al., 2013; Sato, 2009; Sloth et al., 2009).
Unstructured uncertainties, however, represent a much more
general class of nonlinear systems and can incorporate model in-
accuracies and measurement noise. One method to represent un-
structured uncertainties is to model a nonlinear system by a linear
system with norm bounded uncertain matrices. Wang et al. (2014)
proposed a set of LMIs that need to be solved at each time step to
obtain a control solution that satisfies some performance criteria.
However, since finding the LMI solution requires special comput-
ing tools, real time computation is a challenge in this case espe-
cially when the sampling time is relatively small. Furthermore, the
solution of the LMIs might not be found because representing a
highly nonlinear system by a set of linear systems will lead to large
values of uncertainty norms due to linearization error. Another
approach that deals with nonlinear systems with unstructured
uncertainties is a combination of backstepping and small gain
theorem (Li et al., 2014; Liu et al., 2014; Tong et al., 2009). Hsu
et al. (2015) proposed the intelligent nonsingular terminal sliding-
mode controller and used the Lyapunov theory to prove the sta-
bility of the control system. By using the Lyapunov method, Sal-
gado et al. (2014) introduced the proportional derivative fuzzy
control supplied with second order sliding mode differentiation.
Baghbani et al. (2016) proposed a robust adaptive fuzzy controller
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by minimizing the H2 energy and tracking cost function. However,
the above methods can only be applied to a certain class of non-
linear dynamic systems where the input is represented by a linear
term in the system's mathematical model. Gao et al. (2012) pre-
sents an approach to control general nonlinear systems based on
Takagi–Sugeno (T–S) fuzzy dynamic models. The method uses LMI
approach to design the TS fuzzy controller to stabilize systems
with norm bounded unstructured uncertainties. However, ob-
taining the bounded norms of uncertain nonlinear systems was
not addressed in the paper and the LMI conditions for norm
bounded uncertainties are generally conservative.

To capture the uncertainties in systems, type-2 fuzzy systems
(Karnik et al., 1999) have been introduced, in which the type-2
fuzzy set is utilized. However, due to the complexity of the rule
uncertainties and computational requirements to calculate the
output, modeling nonlinear systems by using type-2 fuzzy sys-
tems is a very computationally intensive process. This leads to
the concept of an interval type-2 fuzzy-logic system, in which the
secondary membership functions of either the antecedents or
the consequents are simplified to an interval set. Similar to type-
1 fuzzy systems, the combination of type-2 fuzzy systems and
neural networks brings different intelligent modeling and opti-
mization techniques to obtain rule bases and membership
functions without the need of an expert knowledge. Méndez and
de los Angeles Hernandez (2009) presented a technique to obtain
an interval type-2 fuzzy neural network by the orthogonal least
square and back propagation methods. Rubio-Solis and Pa-
noutsos (2015) proposed a modeling framework for an interval
type-2 radial basis function neural network via a granular com-
puting and adaptive back propagation approaches. However, the
uncertainties represented in type-2 fuzzy neural systems are
normally not in the form that can be easily used to design a ro-
bust controller. Furthermore, there is a lack of a theoretical sta-
bility analysis for type-2 fuzzy neural network based control
systems.

Hydraulic positioning systems are important in different in-
dustries such as transportation, agriculture and aerospace. The
effects of nonlinear frictions are considered as the most important
obstacle for improving the precision of hydraulic actuators. Non-
linear friction exists in all hydraulic systems (Wang et al., 2008).
The friction uncertainty includes stribeck effect, hysteresis, spring-
like characteristics, stiction and varying break-away force (Lin
et al., 2013). It has also been known that nonlinear friction is very
difficult to model, and hence it is considered as the sources of
uncertainties for which many controllers have been implemented
to demonstrate their robustness in recent years (Lin et al., 2013;
Mandal et al., 2015; Wang et al., 2008; Yao et al., 2014b).

This paper proposes a new method to train an interval type-2
fuzzy basis function network (FBFN) (cf. Section 2). The training
algorithm not only further improves the performances of the
fuzzy neural network system but also provides a framework to
design a robust TS fuzzy controller. FBFNs have been used as
models for many nonlinear systems in the literature (Jin and
Shin, 2015; Lin, 2007; Ngo and Shin, 2015) since an FBFN was
proven to be a universal approximator (Wang and Mendel, 1992).
The antecedent of the interval type-2 FBFN in this study is ob-
tained by using the adaptive least square with genetic algorithm
(Lee and Shin, 2003) while the interval values of the consequent
are obtained by the active set method. A new technique is also
proposed to convert an interval type-2 FBFN to an interval type-2
TS fuzzy model (cf. Section 3). Based on the interval type-2 TS
model and the interval type-2 FBFN, a robust controller that is
not only robust but also produces good transient performances
when implemented on nonlinear systems with unstructured
uncertainties is presented (cf. Section 4).

2. Training interval type-2 FBFN models by using genetic al-
gorithm and active set method

This section provides a new training method to obtain the type-
2 FBFN that can capture unstructured uncertainties within an
unknown nonlinear system. Consider a class of nonlinear dyna-
mical system with m inputs and n state variables (m and n are
positive integers), which can be represented by the following state
space equation:

( + ) = ( ( ) ( )) ( ) = ( )k k kx f x u x x1 , , 0 10

where ( ) = [ ( ) … ( )]k x k x kx , , n1
T is the vector of measurable state

variables, ( ) = [ ( ) … ( )]k u k u ku , , m1
T is the input vector, k is the time

instance, f is the vector of functions that are locally Lipschitz
nonlinear and real continuous in a compact set. The locally Lip-
schitz property of f ensures that the solution of the state space
equations is existent and unique (Khalil, 2002).

It has been proven by Wang and Mendel (1992) that a linear
combination of fuzzy basis functions are capable of uniformly
approximating any real continuous function on a compact set to
arbitrary accuracy. In this paper, to approximate future states of a
nonlinear system, an interval type-2 FBFN model can be con-
structed from the input and measurable state variable data
through a set of J fuzzy rules, in which rule Rj to calculate the
future value of the state variable xp has the following form:
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By assuming that the singleton fuzzier, product inference and

centroid defuzzifier are used in the inferencing process, for a crisp
input vector
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the output of the type-2 FBFN described in (2) is an interval
number and can be calculated by (Lee and Shin, 2003; Liang and
Mendel, 2000):
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