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a b s t r a c t

Extreme learning machine (ELM) has demonstrated great potential in machine learning owing to its
simplicity, rapidity and good generalization performance. In this investigation, based on least-squares
estimate (LSE) and least absolute deviation (LAD), we propose four sparse ELM formulations with zero-
norm regularization to automatically choose the optimal hidden nodes. Furthermore, we develop two
continuous optimization methods to solve the proposed problems respectively. The first is DC (difference
of convex functions) approximation approach that approximates the zero-norm by a DC function, and the
resulting optimizations are posed as DC programs. The second is an exact penalty technique for zero-
norm, and the resulting problems are reformulated as DC programs, and the corresponding DCAs con-
verge finitely. Moreover, the proposed framework is applied directly to recognize the hardness of licorice
seeds using near-infrared spectral data. Experiments in different spectral regions illustrate that the
proposed approaches can reduce the number of hidden nodes (or output features), while either improve
or show no significant difference in generalization compared with the traditional ELM methods and
support vector machine (SVM). Experiments on several benchmark data sets demonstrate that the
proposed framework is competitive with the traditional approaches in generalization, but selects fewer
output features.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Extreme learning machine (ELM) (Huang et al., 2006, 2010) is a
popular and important learning algorithm for single-hidden-layer
feedforward neural networks (SLFNs) (Huang et al., 2006). With
good generalization performance, ELM has been applied success-
fully in regression and classification applications. Compared with
traditional neural networks, the main advantages of ELM are that
it runs fast and is easy to implement. Its hidden nodes and input
weights are randomly generated and the output weights are ex-
pressed analytically. Moreover ELM overcomes some drawbacks of
traditional neural networks, such as local minima, imprecise
learning rates and slow convergence rates. However, the tradi-
tional ELM does not explicitly combine output features (or hidden
nodes) and generalization of the model, which makes it difficult to
control automatically the balance between prediction accuracy
and the number of selected features.

According to statistical learning theory (SLT) (Vapnik, 1998), to
ensure better generalization performance on test set, an algorithm

should not only achieve low training error on training set, but also
have a lower Vapnik–Chervonenkis (VC) dimension. Recently, re-
searches (Liu et al., 2012; Huang et al., 2015) indicate that the VC
dimension of ELM has a specific value and depends strongly on the
number of the hidden-layer nodes. In addition, according to the
theories (Liu et al., 2012; Huang et al., 2015), ELM has universal
approximation capability. It can achieve low approximation error
on training set. Therefore, ELM is a potential learning method, and
its hidden layer neurons are important for building ELM network
with good generalization.

However, some hidden nodes might be closely correlated owing
to the randomness of the input weights and hidden node biases in
ELM. Thus it is very necessary for regularization to prevent over-fit-
ting and enhance the generalization capability. In addition, ELM
outputs its weight based on the least-squares estimate (LSE) (Xiang
et al., 2012), and its outputs lack sparseness. Therefore looking for
compact ELM networks and choosing the optimal hidden nodes re-
main important subjects to achieve good performance. Recently,
several techniques have been developed to obtain the sparse ELM
network, which are summarized as follows:

(1) Double-regularized ELM models such as TROP-ELM (Miche
et al., 2011) and regularized ELM with missing data (Yu et al., 2013).

TROP-ELM is an improvement of the optimally pruned extreme
learning machine (OP-ELM) (Miche et al., 2010). It uses a cascade
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of two regularization penalties, the l1-norm and l2-norm. TROP-
ELM first constructs a SLFN like ELM, then ranks the best neurons
by l1 regularization, finally selects the optimal number of neurons
by l2 regularization. TROP-ELM introduces the l2 regularization in
the calculation of the pseudo-inverse by the singular value de-
composition (SVD), and it uses the leave-one-out (LOO) error to
select the optimal number of neurons. Thus this is complicated to
implement. The regularized ELM with missing data (Yu et al.,
2013) is a modification version of TROP-ELM. It uses a cascade of
l1-penalty and l2-penalty in ELM to solve the missing data
problem.

(2) Robust ELM models such as RELM (Horata et al., 2013) and
robust ELM with outliers (Barreto and Barros, 2016).

The RELM (Horata et al., 2013) proposes an extended complete
orthogonal decomposition (ECOD) method to compute the
weights of the ELM. And the paper also proposes the other three
algorithms—the iteratively reweighed least squares (IRWLS-ELM),
ELM based on the multivariate least-trimmed squares (MLTS-ELM)
and ELM based on the one-step reweighed MLTS (RMLTS-ELM)—
to solve the outlier robustness problems. Robust ELM with outliers
(Barreto and Barros, 2016) is designed to apply M-estimators (Bai
and Wu, 1997) in the output weights instead of the standard or-
dinary least squares method.

(3) Sparse ELM models such as the l1/2 regularized ELM
(Khan et al., 2014; Han et al., 2015) and l1-regularization approach
(Balasundaram and Kapil, 2014; Luo and Zhang, 2014).

The use of l1-norm regularization results in sparse solutions,
thereby helping with feature selection. However, the l1-norm
regularization scheme is consistent in feature selection under
some conditions with restrictive assumptions, while there exist
certain cases where l1-penalty technology is inconsistent in fea-
ture selection (Zou, 2006; Lin et al., 2009; Le Thi et al., 2015). Note
that the l1-norm regularization criterion generates many compo-
nents that are close to zero but not exactly equal to zero. The

−l norm1/2 regularization is easier to solve than the l0-norm reg-
ularization, and more sparse than the l1-norm regularization. But
the performance of sparse representation using the l0-norm reg-
ularization is stronger than that of the −l norm1/2 regularization.

(4) Regularized ELM such as pre-fitting and back-fitting ap-
proach (Li et al., 2014) and regularized ELM (Iosifidis et al., 2015).

The pre-fitting and back-fitting approach (Li et al., 2014) is with
l2-norm regularization. This two-stage approach is a greedy algo-
rithm and time-consuming. RELM (Iosifidis et al., 2015) is based on
Frobenius norm of matrix. This approach can choose appropriately
hidden layer weights and leads to ELM space dimensions having
varying values for different training samples. Usually, these
methods cannot automatically produce sparse representation.

Feature selection for classification and regression problems is
an important topic with many applications, the objectives of
which are two-fold: selecting a small feature subset while main-
taining high accuracy. Specifically, feature selection for a linear
decision function β( ) = ( )f x xsgn T can be posed as searching for a
sparse weight vector β such that most elements of β are zero. This
implies that when the ith component of β is zero, the ith com-
ponent of an observation vector x is irrelevant to the class of x. The
zero-norm of the vector β, β β∥ ∥ = { | ≠ }card i 0i0 , is defined to be
the number of nonzero elements in β, meaning that zero-norm
regularization criterion allows us to reduce the number of re-
presentative features in the decision function f(x). Thus feature
selection for the decision function f(x) usually is posed as mini-
mizing the β∥ ∥0 under appropriate constraint conditions. Never-
theless, the sparse ELM model based on the zero-norm is relatively
few discussed in the literature, the main reason for which is the
discontinuity and nonconvexity of the zero-norm. Therefore, most
work in dealing with feature selection has focused on effective
approximation of the zero-norm. The l1-norm is only a convex

approximation of the zero-norm (see Fig. 1). Therefore, the main
questions for feature selection include how to approximate the
zero-norm effectively and which computational method to use for
solving the resulting optimization problem.

In this paper, based on least-squares estimate (LSE) and least
absolute deviation (LAD) (Cao and Liu, 2009; Yang et al., 2011), we
present two sparse ELM frameworks with zero-norm regulariza-
tion to select automatically output features. Moreover we present
four continuous methods to solve the proposed problems. The first
is a DC (Tao and An, 1997; Le Thi et al., 2014, 2008, 2015) ap-
proximation approach that approximates the zero-norm by a DC
function. The second applies a new exact penalty technique (Le Thi
et al., 2014) to reformulate equivalently the original problem as DC
programs. The resulting problems all are posed as DC programs.
The corresponding DC optimization algorithms converge linearly
or finitely and only requires solving one quadratic program at each
iteration.

Throughout the paper we adopt the following notations. The
scalar product of two vectors x and y in the n-dimensional real
space is denoted by x yT or 〈 · 〉x y . For a n-dimension vector x, ∥ ∥x 1

denotes the l1-norm of x, ∥ ∥ = ∑ | |=
=x xi

i n
i1 1 , where |·| denotes ab-

solute value operator, and ∥ ∥x 2 denotes the l2-norm of x,

∥ ∥ =x x xT
2 . The base of the natural logarithm is denoted by ϵ. A

vector of zeros in a real space of arbitrary dimension is denoted by
0. An arbitrary dimension vector of ones is denoted by e.

The rest of the paper is organized as follows. Section 2 briefly
summarizes DC programming and ELM. In Section 3, we propose a
sparse ELM framework with the zero-norm regularization, and
develop four nonconvex optimization algorithms to solve the
problems. The experimental results are analyzed in Section 4 and
Section 5 give the concluding remarks, summarizes the main
contributions of this work, and presents future directions of
investigation.

2. Background

2.1. DC programming

DC programming and DCA, introduced by Pham Dinh (con-
stitute the backbone of nonconvex continuous programming (Tao
and An, 1997; Le Thi et al., 2014, 2008, 2015). Generally speaking, a
DC program takes the form

Fig. 1. Approximations to zero-norm for the Gaussian function η ( )z .
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