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In this paper a reinforcement learning based nonlinear control strategy for control of boost converters is
presented. Control of boost converters is a challenging nonlinear control problem, and classical linear
control techniques perform poorly since the model of the converter depends on the state of the
switching elements. In this paper the boost converter control problem is formulated as an optimal multi-
step decision problem aimed at attaining a constant output voltage. Optimal multi-step decision pro-
blems can be solved using the framework of Markov Decision Processes (MDP) and Reinforcement
Learning (RL); however iterative solution procedures exist only for discrete state problems. In this paper
two possible approaches for applying RL to the boost converter problem are proposed. First a RL based
control strategy for a discretized model of the boost converter problem is presented. Next an approach
that applies robust regression to mitigate the effects of discretization by smoothly interpolating between
the control decisions computed for the discretized states is presented. Simulation results indicate that
the robust regression based RL strategy significantly reduces oscillations and overshoot and gives a better

output voltage compared to the pure RL strategy.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A boost converter (Sundareswaran and Sreedevi, 2009; Rashid,
2004) is a step-up DC to DC converter that finds extensive appli-
cation in solar power, fuel cell, hybrid electric vehicle, LED, fluor-
escent lighting and battery technologies. Boost converters are
primarily used to avoid the stacking of DC voltage sources in series
to achieve higher voltages. All boost converters require a mini-
mum of two switching devices and at least one energy storing
element. Control of the output voltage of the boost converter is a
challenging nonlinear control problem because the model of the
converter depends on the states of the switching elements. Con-
ventional controller design strategies using approximate linear
models to control boost converters do not perform well, so
exploration of alternate optimal and nonlinear strategies is of
interest. This paper presents a machine learning based strategy for
the solution of the boost converter control problem.

The boost converter control problem can be formulated as a
sequential optimal decision problem if the framework of Markov
Decision Processes (MDP) is adopted. This is advantageous since
effective RL (Sutton and Barto, 1998; Kaelbling et al., 1996) based
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algorithms can be used to compute optimal control actions for
MDP based models.

1.1. Reinforcement learning

RL is a branch of machine learning (Watkins and Dayan, 1992;
Bertsekas and Tsitsiklis, 1996; Mitchell, 1997) that mimics the
behaviour of an intelligent agent that learns to accomplish a task
by choosing actions to maximize environmental rewards. The
rewards can depend on just the state, or on both the state and
action taken in the state. Use of RL in designing controllers for
nonlinear control problems is reported in (Noel and Pandian, 2014;
Fernandez-Gauna et al., 2014). RL was used in applications like
game playing (Tesauro, 1994, 1992), controlling autonomous
robots and scheduling (Ng et al., 2004; Shokri, 2011; Pazis and
Lagoudakis, 2011; Wiering et al., 2011) and in industrial process
control (Lewis and Vamvoudakis, 2011; Syafiie et al., 2011). The
application of RL to practical problems is hindered by the ‘curse of
dimensionality’ (Bellman, 1957), where the computational com-
plexity increases exponentially with increase in number of dis-
cretization levels of the state space. In this paper a robust
regression based function approximation strategy is used to
mitigate the effects of discretization of the continuous state space.

In the RL learning paradigm the number of all possible states
and actions is assumed to be finite. When the system is in state s,
the agent takes an action a, that drives the system to the next state
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s’. The state s and the action a are in general vectors of real
numbers. The agent receives a reward R(s,a) from the environment
that indicates the desirability of taking an action a in state s. The
goal of the agent is to maximize the expected value of cumulative
discounted rewards by taking appropriate actions over time and
this model is referred to as MDP. In this paper, discounted rewards
are used to encourage the agent to achieve the goal state faster
and to ensure a finite total reward. The extent to which future
rewards are discounted can be controlled by changing the discount
factor .

An MDP is thus characterized by a 5-tuple (S, A, ¥, Psa, R), where
S is the set of all possible states, A is the set of all possible actions, y
is the discount factor, Pg4(s’) are the state transition probabilities
and R is the reward function. In general the policy function 7 maps
states to actions, (7:S—A) and the reward function R maps state
action pairs to real numbers (R:S x A—R). In some applications
rewards do not depend on the action taken (R:S— R).

The value function Vis the expected sum of discounted rewards
for a given initial state and predetermined policy. If a policy 7 is
being executed, when the system is in state s, the action a is taken
according to the policy indicated by a=z(s). The value function
assigns a real number to each state that indicates the desirability
of that state. The concept of a value function is a fundamental
feature of the RL paradigm. Frequently the value function is easier
to compute than the policy function. So, the policy function is
computed from the value function in RL. The value function is
defined by Eq. (1).

V() = E(R(S0)+7R(S1)+7°R(S2)+ -+ S0 = 5, 70) M

In Eq. (1), discount factor y € [0,1] helps in emphasizing present
rewards and discounting future rewards. The goal of RL is to
provide a best policy that maximizes the total discounted rewards.
The optimal value function is the value function when the optimal
policy is followed and is given by Eq. (2)

V*(s) = max V7(s) (2)

Bellman's equation for the optimal value function is given in Eq. (3)
and it states that the expected cumulative discounted rewards obta-
ined when starting in state s and following the optimal policy is equal
to sum of the immediate reward R(s) received for being in state s and
the discounted maximum expected rewards from the next state s'.
This represents the stochastic case when transition to the next state is
probabilistic.

V7(8) = R(s)+ymax X Psa(s)V*(s)) 3)

In case of a deterministic system, all state transition prob-
abilities are zero except for one state transition (for which the
probability is 1). For the deterministic case Bellman's equation for
the optimal value function given in Eq. (3) reduces to Eq. (4)

V*(s) = R(s) +yrggj<v* (s) 4

Any policy that maximizes the future discounted rewards is
referred to as an optimal policy and is denoted by 7. The optimal
policy can be computed from the optimal value function with Eq.
(5) which states that, the best action to take in state s is the action
that maximizes the expected cumulative discounted rewards from
the next state s'.

7'(§) = argmaxy Ps(s)V*(s') (5

seS

If the system is deterministic, then the above equation reduces
to Eq. (6)

T*(s) = argma/?‘(V* (s) (6)

Table 1
Nomenclature used in the formulation of the boost converter control problem.

S.no. Symbol Description

1 s system state vector
2 a control action vector or input to the system
3 Psq(s’)  state transition probabilities
4 R(s,a) reward for taking action a in state s
5 (s) action taken in state s following a policy =
6 VA(s) cumulative sum of discounted rewards for following policy 7z,
starting from state s
7 T optimal policy function
8 v optimal value function
9 X [x1 x2]" state vector of the boost converter system
10 D set of all possible duty cycle values
11 y discount factor to favour immediate rewards
12 N; number of discretization levels for the state variable x;
13 Np number of discretization levels for the duty cycle

Fig. 1. Boost converter in open loop.

The nomenclature of variables used in this paper and their
description is given in in Table 1.

1.2. Boost converter

A boost converter in open loop without feedback control is
shown in Fig. 1. The behaviour of the boost converter can be
modelled with two linear state space models; one model describes
the boost converter system when the converter switch is ON and
another model describes the system when the switch is OFF.

When the converter switch is ON, the inductor stores energy in
its magnetic field and when the switch is OFF, the magnetic field is
de-energized to maintain current flow to the load. The voltage
seen at the load is the sum of input voltage and the voltage across
the inductor aiding in achieving a higher output voltage. A boost
converter in open loop does not provide good dynamic response
and regulation characteristics, so it is always used in closed loop. A
boost converter in a closed loop is shown in Fig. 2. The controller
senses the present state of the boost converter and changes the
duty cycle of the pulse width modulator to maintain a constant
output voltage.

The use of linear control techniques like Proportional Integral
and Derivative (PID) controllers for boost converter control is
widely reported in literature. Traditional controller design meth-
ods (Hung et al., 1993; Cominos and Munro, 2002; Guo et al., 2003;
Balestrino et al., 2006) aim at proper tuning of the proportional,
integral and derivative constants so that the boost converter pro-
vides a constant output voltage. However linear control techniques
described in current literature do not provide satisfactory perfor-
mance due to the hard nonlinearity of the boost converter system.
Perry et al. (2004) describe a PI like fuzzy controller while Sree-
kumar and Agarwal (2008) proposed a hybrid algorithm for vol-
tage regulation in boost converters.

The organization of this paper is as follows: first the boost
converter control problem is formulated as an optimal sequential
decision problem (MDP), second a scheme that uses robust
regression for effective solution using RL is presented, finally
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