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a b s t r a c t

Developing controller for uncertain nonlinear systems in the presence of disturbances is an important
and still challenging problem. Adaptive control method asserts to adapt system parameters against
uncertainties, if only uncertainties change sufficiently slowly. Alternatively, if uncertainties stay in known
bounds, robust control approaches claim to ensure system stability. In this paper, a Proportional–Integral
(PI) indirect adaptive Least Squares Support Vectors Regression (LS-SVR) control scheme for a class of
uncertain nonlinear system in the presence of large and fast disturbances is proposed. The LS-SVR is used
to approximate the nonlinear uncertainty which must be bounded, whereas in comparison to robust
control methodologies no requirement needs for bounds to be known. The asymptotic stability of the
control scheme is proved by using Lyapunov synthesis. The simulation study is performed on a second-
order inverted pendulum system in the presence of fast against slow and large against small disturbances
to demonstrate the effectiveness of the proposed control scheme.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the theory of control, significant developments have been
made in nonlinear feedback methods for at least the past three
decades (Boutalis et al., 2014; Slotine and Li, 1991; Marino and
Tomei, 2013). Generally, to implement the nonlinear feedback
control method the precise mathematical model of the system is
required (Åström and Björn, 2013; Khalil and Grizzle, 1996). The
mathematical model is needed to accurately describe the dynamic
and physical behavior of a plant. This issue is still quite challenging
for nonlinear systems. Due to existing nonlinearity or parametric
uncertainty of a plant, uncertainty is inevitable in a system model.
Besides, ambient sources may cause external disturbances which
can have impact on behavior of a system. In addition, simple
system modeling leads to simpler controller design which can
considerably reduce the implementation cost. Uncertainties may
arise from the lack of information about system modeling, inexact
friction modeling, component faults, and etc. And disturbances are
derived from the unknown effect of existing physical phenomena
in the environment (Khooban and Niknam, 2015; Diao and kevin,
2002; Wai, 2007; Mohammad Hassan, 2014).

Many researchers have been studied adaptive controllers under
the terms of system parameters change gradually to overcome the
uncertainties of a system model (Åström and Björn, 2013; Khalil
and Grizzle, 1996). On the other side, robust adaptive controllers
have been designed because of the existing disturbances in the
environment and the lack of robustness property in adaptive
controller to cope with the disturbances (Yao and Masayoshi, 1997;
Wang et al., 2014; Esmaieli et al., 2014). In order to apply adaptive
feedback control method to nonlinear system, identification
technique should be employed to approximate those uncertainties
and disturbances as well. Clearly, offline system identification
techniques cannot be used, because uncertainties and dis-
turbances may change over time. To this end, online universal
function approximation methods such as fuzzy systems or neural
networks have dealt with the unknown uncertainties and dis-
turbances of systems in many control problems. Nowadays, it is a
transparent fact that universal approximator can approximate any
given real continuous function on a compact set to an arbitrary
accuracy (Diao and Kevin, 2002; Wang, 1999; Wang et al., 2002;
Ghaemi et al., 2014; Montúfar, 2014).

Fuzzy systems are one of the well-known universal approx-
imation methods, which can incorporate linguistic information in
expert human operators. This feature is used in the control
schemes design of a stable adaptive fuzzy controller based on
Lyapunov synthesis for a class of unknown nonlinear system. The
control schemes use fuzzy systems to approximate the unknown
functions and uncertainties to obtain certainty equivalence control
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law. Adaptive fuzzy control schemes based on how they use fuzzy
systems are classified into two categories, i.e. direct and indirect.
Direct adaptive fuzzy controllers use fuzzy systems as controllers.
In other words, they incorporate fuzzy IF-THEN rules directly into
themselves. On the other side, adaptive fuzzy controllers which
use fuzzy systems as models of the plants are indirect adaptive
fuzzy controllers, i.e. they use fuzzy IF-THEN rules to describe the
plant (Wang et al., 2002; Wang, 1996; Wei et al., 2014). Wang
(1996) proposed a general control approach based on Lyapunov
theory to design a stable adaptive controller with a supervisory
controller. Many researchers have addressed a lack of robustness
in the adaptive fuzzy control scheme of Wang and attempted to
improve it (Shahnazi and Akbarzadeh-T, 2008; Nie and Wan Tan,
2011; Zhang and Zhang, 2006). In Yang and Ren (2003) an adaptive
fuzzy robust tracking control method introduced, which used
Takagi–Sugeno type fuzzy systems to approximate unknown
uncertain functions and uncertain gain function. For meticulous
details about analysis and design of model-based fuzzy control
systems, see Feng (2006).

Despite the positive features of fuzzy systems, large number of
fuzzy rules emerged when fuzzy systems are used for approx-
imating high-order systems, i.e. real applications, and also in
multiple input multiple output (MIMO) systems (Wai, 2007; Wang
et al., 2014; Wei et al., 2014; Rong and Zhao, 2010). Hence, the
control scheme based on fuzzy approximation approach will be
complex and have a high computational cost.

Neural networks are alternative approaches to deal with the
uncertainties, due to their universal approximation capability
(Khooban and Niknam, 2015; Wei et al., 2014; Zargarzadeh et al.,
2014). In adaptive neural control, both direct and indirect forms,
neural networks are used to identify the unknown parts of a
complex system model. They are implemented simply and usually
achieve good precision in their approximations; however, some
difficulties arise in usage of these methods as follows:

A suitable structure, i.e. the number of layers and neurons,
training speed rate, adequate input and output data, should be
chosen for neural networks especially in large-scale control pro-
blems to avoid training process trap into local minima and over-
fitting problem (Xu and Chen, 2004; Chunli et al., 2010; Hong
et al., 2008).

Suykens proposed Least Square Support Vector Regression (LS-
SVR) for function estimation problems (Suykens et al., 2001; Gestel
et al., 2002). LS-SVR has a strong mathematical foundation and has
made a major breakthrough in neural networks. It has strong
generalization ability and can find the global minimum, thus it
avoids trapping local minima. Moreover, a great advantage is its
data driven structure since no requirement is needed for deter-
mining the number of hidden layers and neurons-like (Hong and
Xu, 2008; Suykens et al., 2001; Gestel et al., 2002; Chuang, 2007).
Therefore, it becomes an excellent tool for regression estimation
problems thanks to all those features.

Many researchers have been used LS-SVR to perform approx-
imating unknown nonlinear functions in adaptive controls (Chunli
et al., 2010) and (Zhicheng et al., 2012; Mahmoud, 2011; Wang et
al., 2012; Xie et al., 2010; Ko and Lee, 2013). An indir-
ect adaptive control approach based on LS-SVM proposed for a
class of nonlinear dynamic systems with unknown nonlinearities
(Wang et al., 2012). In (Xie et al., 2010), LS-SVR used for approx-
imation of nonlinear functions in indirect adaptive control and the
updating rule of LS-SVM parameters derived from Lyapunov sta-
bility theory.

In this paper, a two-level indirect-adaptive LS-SVR control
scheme for a class of uncertain system is proposed by considering
external disturbances that are bounded but the magnitude of
those bounds is not needed to be known. The proposed control
strategy contains a PI-type switching structure appropriately deals

with the unknown bounded large-and-fast disturbances while
providing a smooth control signal. The asymptotic stability of
control strategy is proved by using Lyapunov synthesis. A second-
order nonlinear inverted pendulum is employed to demonstrate
the effectiveness of the control scheme in approximation part and
its robustness in confronting large-and-fast disturbances.

The rest of the paper is organized as follows. In Section 2.1, the
problem formulation and assumptions are defined. Then, in Sec-
tion 2.2, the LS-SVR formulation and the universal approximation
capability of LS-SVR are briefly reviewed. In Section 3, an adaptive
LS-SVR control scheme is proposed and stability and error con-
vergence of the closed-loop control system are discussed in detail.
A simulation example using an inverted pendulum system under
various disturbances is performed to support the proposed control
scheme in Section 4. Finally, Conclusions are drawn in Section 5.

2. Problem statement

2.1. Problem statement and assumptions

Consider a class of Single-Input Single-Output (SISO) n-th order
nonlinear system in the following form (Shahnazi and Akbarza-
deh-T, 2008):

x nð Þ ¼ f x; _x;…; x n�1ð Þ� �þg x; _x;…; x n�1ð Þ� �
u tð Þþd x; tð Þ

y¼ x ð1Þ
where f and g are unknown bounded nonlinear functions in which
no prior knowledge is needed for bounds to be known and dðx; tÞ is
an unknown external disturbance. Furthermore, uAR and yAR are
the control signal and the output of the system, respectively. XT ¼
x; _x;…; x n�1ð Þ� �¼ x1; x2;…; xn½ �ϵRn is the state vector of the system
assumed to be available for measurement. The following
assumption is considered for the nonlinear system mentioned in
(1) by the authors.

Assumption 1. (Shahnazi and Akbarzadeh-T, 2008): An unknown
constant D is the bound of the external disturbance d x; tð Þ, i.e.,
d x; tð Þ
�� ��rD ð2Þ

Assumption 2. (Shahnazi and Akbarzadeh-T, 2008): In order to
have a controllable system, it is required that g x; tð Þa0 in (1). g
x; tð Þ is assumed to be positive, i.e., g x; tð Þ40. By contrast, g x; tð Þ
can be negative and the control signal is derived in a similar way.
The control objective is to design a controller to provide the control
signal u based on LS-SVR and an adaptation law for adjusting
controller parameters so that the X state vector of the system in
(1) follows a given desired trajectory state XT

d ¼ xd; _xd;…; xðn�1Þ
d

h i
in the presence of external disturbance dðx; tÞ. Therefore, by using
the designed controller the tracking error in (3) should converge
to zero.

E¼ x�xd ¼ e; _e;…; e n�1ð Þ� �T ð3Þ

Assumption 3. (Shahnazi and Akbarzadeh-T, 2008): The desired
trajectory vector Xd is continuous, measurable, and bounded with
a known positive constant Ψ :

xd oΨ
���� ð4Þ

2.2. Least square support vector regression

The SVR formulation was modified by (Gestel et al., 2002) at
two points: First, instead of inequality constraints takes equality
constraints and changes the quadratic programming to a linear
programming. Second, a squared loss function is taken from the
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