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a b s t r a c t

In this paper, two approaches are proposed and compared for the detection and identification of aircraft
subsystem failures based on the artificial immune system paradigm combined with the hierarchical
multiself strategy. The first approach relies on the heuristic ranking of lower order self/non-self pro-
jections and the generation of selective immunity identifiers through structuring of the non-self. The
second approach is based on an information processing algorithm inspired by the functionality of the
dendritic cells. The artificial dendritic cell is defined as a computational unit that centralizes, fuses, and
interprets information from the multiple selves to produce a unique detection and identification out-
come. A hierarchical multi-self strategy is used with both approaches considering 2-dimensional self/
non-self projections or subselves. A mathematical formulation of the concepts and detailed imple-
mentation algorithms are presented. The proposed methodologies are demonstrated and compared
using simulation data for a supersonic fighter from a motion-based flight simulator at nominal condi-
tions, under failures of actuators, malfunction of sensors, and wing damage. In all cases considered, both
detection and identification schemes achieve excellent detection and identification rates with practically
no false alarms.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Aircraft subsystem failures that result from various sources
(such as severe weather conditions, jammed control surfaces,
malfunctioning sensors, structural damage during air combat, etc.)
may cause catastrophic accidents. Even with the most severe
failures, aircraft accident investigations showed that, in many
cases, it would have been possible to avoid the accident if the pilot
would have taken proper actions at the appropriate time. Although
some experienced and highly-skilled pilots can compensate for
some failures, they often experience stress and confusion and,
therefore, may not take proper actions within few seconds.

Fault-tolerant control strategies have been an extensive
research topic in failure accommodation (Zhang and Jiang, 2008;
Campbell et al., 2010; Nguyen and Kumar, 2009). However, such
strategies often require vital triggering tools that are intelligent
enough in gathering the information about the failed subsystem,

the nature of the failure, and the severity of the failure as soon as it
takes place such that an accommodation strategy identifies which
of the remaining resources must be used to accommodate the
resulting changes in the system. In fact, this information is
important to the pilots too since it represents an alarm tool for
their continuous situation awareness.

The existence of a Failure Detection and Identification (FDI)
scheme can support automatic accommodation as part of a fault-
tolerant control system and it can also improve human accom-
modation through increased pilot situational awareness. Most of
the research efforts in this area have considered only individual
failures within limited regions of the flight envelope (Azam et al.,
2005; Oonk et al., 2012; Boskovic et al., 2009). State estimation or
observer-based schemes have been widely proposed (Wilsky,
1980; Marcos et al., 2002; Shin et al., 2002; Narendra and Balak-
rishnan, 1997) for actuator FDI relying on Kalman or other classes
of filters. Artificial Neural Networks (ANN) have also been exten-
sively used (Napolitano et al., 1996; Jakubek and Strasser, 2002;
Lou et al., 2002; Napolitano et al., 2000) to solve the FDI problem
for aerospace systems. Alternative approaches for FDI and pilot
awareness enhancement were also proposed based on inductive
learning (Iverson, 2004).Recent research studies (Belcastro and
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Jacobson, 2010; Belcastro, 2010; Roemer et al., 2008; Figueroa et
al., 2009), however, have acknowledged the need for an integrated
and comprehensive solution to the problem of aircraft FDI, which
takes into account the complexity and multidimensionality of
aircraft systems.

The issue of sensor FDI has been addressed to a lower extent,
since triple and quadruple physical redundancy of aircraft sensors
is a common practice. However, sensor FDI schemes based on ANN
estimations of sensor outputs have been proposed (Perhinschi et
al., 2007; Totah et al., 2007).

Statistical and artificial-intelligence methodologies form the
majority of the techniques used in FDI (Hwang et al., 2010).
Depending on the technique used, these methods only partially
satisfy the FDI requirements of raising minimum false alarms
under normal operating conditions, detecting and identifying all
subsystem failures with high rates, adapting to system changes,
exhibiting robustness to system disturbances and uncertainties,
and being scalable to the complexity and dimensionality of the
system. A promising candidate in this respect is the Artificial
Immune System (AIS) concept (Dasgupta and Attoh-Okine, 1997).

The AIS emerged in recent years as a new computational
paradigm in artificial intelligence. The concept has shown a very
promising potential for a variety of applications such as anomaly
detection (D’haeseleer and Forrest, 1996; Dasgupta and Majumdar,
2002; Forrest et al., 1994; Dasgupta and Forrest, 1999), data mining

(Dasgupta and Majumdar, 2002), computer security (Forrest et al.,
1994; Gonzalez and Dasgupta, 2003), adaptive control (Farmer et
al., 1986; Karr et al., 2005; Ko et al., 2004), and pattern recognition
(De Castro and Timmis, 2002a). Although new models and appli-
cations are currently being developed (Dasgupta and Attoh-Okine,
1997) and existing methods are improved continuously, the entire
field of AIS including negative selection algorithms is still rela-
tively young and not well defined. Theoretical issues have been
occasionally addressed in the attempt to assess and prove AIS
applicability (Stibor et al., 2006).

In addition, the AIS concept has shown a promising application
for fault detection of aerospace systems (Karr et al., 2005; Krish-
naKumar, 2003; Sanchez et al., 2009). These efforts have been
focused primarily on aircraft systems fault detection and identifi-
cation; however, they only have considered single classes and high
magnitudes of failure for limited regions of the flight envelope.
Therefore, the availability of failure detection and identification
schemes with high rates of success, with comprehensive coverage,
integrating all aircraft sub-systems and operational modes is a
critical objective of current research efforts at West Virginia Uni-
versity (WVU) and Embry-Riddle Aeronautical University (ERAU)
(Perhinschi et al., 2010; Moncayo et al., 2010; Moncayo et al.,
2011a; Moncayo et al., 2011b; Davis, 2010; Davis et al., 2010;
Moncayo et al., 2016; Moncayo, 2009; Al Azzawi et al., 2013; Al
Azzawi et al., 2014; Al Azzawi, 2014; Perhinschi et al., 2013).

Fig. 1. The negative selection process.

Nomenclature

CSM Co-stimulatory molecules
D Self/non-self discrimination matrix
Det Detection outcome
DR Detection rate
F0 Non-triggered features matrix
F1 Triggered features matrix
F1φ Current feature-pattern vector
FA False alarm rate
FP Feature-pattern vector
IL10 Interleukin-10
IL12 Interleukin-12
K Number of cytotoxic T-cells
~K Number of residual cytotoxic T-cells
L Life of a dendritic cell
ℳ Migration threshold of a dendritic cell
N Number of features
NDC Number of dendritic cells
Nk Number of training samples of sub-system k

NMDC Number of migrated dendritic cells
NRDC Number of regulatory dendritic cells
Ns Number of subsystems
Nss Number of sub-selves
NSDC Number of stimulatory dendritic cells
Nf tk Number of abnormal conditions types of sub-system k
P Uð Þ Probability function
R Number of suppressor T-cells
S Sub-self of the system
T Size of the moving time window
W0j Non-triggered confidence factor of sub-self j
W1j Triggered confidence factor of sub-self j

Greek

Δ Discriminant
μ Mean vector
Σ Covariance matrix
τ Current sampling time index
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