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Instantaneous measurements of process variables are usually not representative of the process effects as
a whole when defining the condition of an output sample mainly in case of laboratory analysis. Moreover,
process data have considerable dispersion. This leads to uncertainty in input-output time alignment and
in variable relationship. This work employs a trend data-based approach to overcome the negative effects
of these uncertainties in both tasks variable selection commonly supported by correlation analysis and
model identification. Two real case studies using a clinker rotary kiln from a cement plant and a chemical
recovery boiler from a pulp mill were used for illustration purposes. More reliable data-driven system
representation enhances the comprehension of the underlying system phenomena supporting a more
rational basis for decision making.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Transformation of data into useful information for supporting
decision making has been a great challenge to modern organiza-
tions worldwide (Tata, 2013; Manyika et al., 2011). Currently, only
small portions of data are really exploited for information ex-
traction. The reason is the lack of ready-made recipes for handling,
exploring and analyzing the increasingly massive and also com-
plex amount of data. This new data rich-world demands new ap-
proaches for performing data analysis including in thinking (NRC,
2013). On the other hand, a continuous knowledge generation to
answer the growing tighter government and society regulatory
constraints in addition to market competitiveness is mandatory;
data-oriented decision making plays a key role in it (Mayer-
Schonberger and Cukier, 2013).

Continuous processing systems such as steel, petrochemicals,
and pulp and paper mills, have also experienced the data rich-
word paradigm (Qin, 2014; Venkatasubramanian, 2009). Nowa-
days, a multitude of plant sensors registers hundreds or thousands
of measurements of process variables even in a fraction of a sec-
ond. On the other hand, descriptions of continuous industrial
systems are more and more challenging as a result of their in-
herent growing complexity, namely multivariable, non-linear,
noisy and of partial knowledge, which restricts the use of purely
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mathematical models. Alternatively, the data-driven concept using
process historical data has been employed for understanding the
physics and chemistry of processes, or at least for their emulation
(Venkatasubramanian et al.,, 2003; Chiang et al., 2001; Wang,
1999). Nowadays, extracting useful information directly from data
plays a key role in making decisions for obtaining safer, cleaner,
more economical and more efficient industrial operations.

Apart from continuous process representation, dealing with
raw data sets is also a challenging task once they are composed of
e.g. redundant and irrelevant information, asynchronous sample
times, discrete and continuous variables, and laboratory and field
sources. Therefore, to some degree, a pre-processing step is ne-
cessary before using it. Nevertheless, making use of punctual in-
formation given by individual measurements of process variables
may be not appropriate. This resides on the fact that instantaneous
measurements are commonly not representative of process effects
as a whole defining the condition of a given output sample. This is
more critical when such condition derives from laboratory analy-
sis. In addition, the time a portion of material spends inside an
industrial equipment depends on several factors e.g. feeding load
and fuel type to mention a few. However, this time interval (or
residence time) usually assumed fix changes continuously in
practice. This uncertainty regarding time alignment also hampers
obtaining realistic input-output correspondence mainly in case of
having laboratory data. Furthermore, an inherent characteristic of
process data is considerable dispersion. This arises from the natural
stochastic uncertainty given by automation devices, systematic
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uncertainty mainly due to loss of sensor calibration over time, and
mainly the extensive operating ranges accepted in continuous
processing systems. Multiple modes of operation (or operating
states) and the frequent interchanges among them also contribute
to a higher dispersion.

This way, instantaneous measurements, fixed residence time
and considerable data dispersion result in masking of the real
input-output time alignment and of the form and intensity of
variable relationship. This resulting uncertainty negatively com-
promises the performance of both tasks variable selection com-
monly based on correlation analysis, and model identification re-
garding input-output mapping. The following studies illustrate the
necessity of taking these uncertainties into account when working
with industrial process data. Most of the applications concern data
reconciliation. Hodouin and Everell (1980) investigate the weigh-
ted sum of squared residuals to satisfy mass conservation equa-
tions. Hodouin et al. (1998) material conservation equations to
deal with the integration error caused by dynamic variations.
Kongsjahju et al. (2000) use a derivation from the unbiased esti-
mation technique to detect gross error under serial correlation.
Abuelzeet et al. (2002) study a global dynamic data reconciliation
strategy with the aim of coping with systematic bias caused by
miscalibrated instruments and outliers caused by process peaks
fluctuations. Chen et al. (2013) reduce the effect of random and
gross errors in process data by using an entropy based-estimator
for satisfying balance equations in a data reconciliation study. Zhu
et al. (2015a, 2015b) use, respectively, probabilistic principal
component analysis and probabilistic principal component re-
gression, to treat outliers with focus on soft sensors development.
An alternative approach to treat process data uncertainty is to
make use of trend rather than individual measurements.

The present paper proposes a trend data-based approach to
overcome uncertainties present in input-output time alignment
and variable relationship. After a pre-processing step transforming
instantaneous data to trend series, the Multi-Layer Perceptron
artificial neural network is employed for variable selection and
model identification. The proposed methodology is illustrated
using two real case studies namely a clinker rotary kiln of a ce-
ment mill and a chemical recovery boiler from a pulp mill.

The remainder of the paper is organized as follows. Section 2
depicts the proposed methodology. The results followed by dis-
cussion are presented in Section 3, and Section 4 gives final
considerations.

2. Material and methods

The proposed methodology is depicted in Fig. 1. The first three
steps including a trend data generation procedure constitutes the
Data Pre-Processing Phase.

Step 1: Data Set Preparation. This initial step deals with the
removal of samples in the raw data set that present some type of
inconsistency, e.g. registry errors and extreme, missing and
anomalous data. A visual analysis using graphical representations
supports this task. In case of unequal sample times, a synchroni-
zation procedure needs to be accomplished. This point often arises
in case of having several data sources mainly between field and
laboratory data.

Step 2: Variable Selection. For a better parameter estimation and
lesser time computation, redundant and irrelevant information
should be not considered for modelling purposes. The previous
graphical analysis in conjunction with a measure of degree of as-
sociation using original and transformed (x°, VX, and logx)
variables are employed (Chatterjee and Hadi, 2006).

Step 3: Trend Data Set Preparation. This step employs a trend-
cycle filter to generate trend series to be used as model inputs
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Fig. 1. Sequence of steps of the proposed methodology.

instead of individual measurements. Trend-cycle decomposition
is addressed e.g. in Dupasquier et al. (1997) and Chagny and
Dopke (2002). This work makes use of the Mohr filter (Mohr,
2005). It consists in an univariate approach to decompose a
times series into a trend, a cyclical and a seasonal component.
The Mohr filter can be seen as an extension of the well known
Hodrick-Prescott filter (HP filter) (Hodrick and Prescott, 1997) by
considering explicit stochastic models for the cyclical, assumed
to follow a stationary ARMA-process, and the seasonal compo-
nents. Furthermore, the stochastic trend model, restricted to a
second order random walk process in the HP filter, which may
not be always appropriate depending on the properties of the
series to be filtered, gives place to a stochastic trend of arbitrary
order in the Mohr filter. This work applies its particular form
called Trend-Cycle filter (TC filter). The HP filter is obtained by
minimising the following objective function, in matrix form:
X =X'yX = XT) + 2XTv2v2XT, for x! (where X and X' are
[T x 1] original and trend series, 4 is a smoothing parameter, and
v? is a second-difference matrix). Its solution follows from the
first order conditions: X' =+ Av2V3)-1X, and XC=X-X.
In contrast, the optimization problem formulation of the TC filter
is as follows: (X —X¢—XTyX — XC — XT) + (v4-1(vXT — Ub)y
(va-1(vXT — Ub)) + XCA (BB)1AXC , for XT and X€ (the [T x 1] cy-
clical series), and b if the trend is assumed to follow a first-order
random walk process with drift (d=1) (where A and B are
[N — 2c x N] matrices representing the AR and the MA process,
respectively, U is a [Tx 1] vector o1, ..1y,
Mc=d+ABB) Ay, and Mr=d+ Vvd-UUN-1)Hv)y 1, if
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