
Yin-Yang-pair Optimization: A novel lightweight optimization
algorithm

Varun Punnathanam, Prakash Kotecha n

Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India

a r t i c l e i n f o

Article history:
Received 20 November 2015
Received in revised form
18 April 2016
Accepted 19 April 2016
Available online 25 May 2016

Keywords:
Yin-Yang-Pair Optimization
Evolutionary computation
Single objective optimization
Metaheuristic
Congress on Evolutionary Computation
2013

a b s t r a c t

In this work, a new metaheuristic, Yin-Yang-Pair Optimization (YYPO), is proposed which is based on
maintaining a balance between exploration and exploitation of the search space. It is a low complexity
stochastic algorithm which works with two points and generates additional points depending on the
number of decision variables in the optimization problem. It has three user defined parameters that
provide flexibility to the users to govern its search. The performance of the proposed algorithm is
evaluated on the set of problems used for the Single Objective Real Parameter Algorithm competition
that was held as part of the Congress on Evolutionary Computation 2013. The results are compared with
that of other traditional and recent algorithms such as Artificial Bee Colony, Ant Lion Optimizer, Differ-
ential Evolution, Grey Wolf Optimizer, Multidirectional Search, Pattern Search and Particle Swarm Op-
timization. Based on nonparametric statistical tests, YYPO is shown to provide highly competitive per-
formance relative to the other algorithms while having a significantly lower time complexity. In addition,
the performance of YYPO is showcased on three classical constrained engineering problems from lit-
erature.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Metaheuristics are frequently employed to solve optimization
problems in various fields due to their inherent advantages over
traditional techniques (Deb, 2001). Many techniques such as Ge-
netic Algorithm (GA) (Holland, 1992) and Particle Swarm Optimi-
zation (PSO) (Kennedy and Eberhart, 1995) are well established in
literature, and variants are regularly developed (Khatib and
Fleming, 1998; Ratnaweera et al., 2004; Gülcü and Kodaz, 2015;
Tsai, 2015; Kim et al., 2007; Chatterjee and Siarry, 2006; Moaye-
dikia et al., 2015; Idris et al., 2015) to improve or modify certain
aspects of the algorithm. This is possible because most meta-
heuristics are remarkably simple and very flexible. Additionally,
being derivative-free, these techniques do not require any prior
knowledge on the physics of the problem and hence are attractive
options for a wide range of problems (Gosselin et al., 2009;
Ramteke and Srinivasan, 2012; Lee et al., 2008; Babu and Angira,
2006; Li and Shao, 2016; Zhao et al., 2016; Ling et al., 2016; Tho-
mas et al., 2015). Single objective metaheuristics also form the
basis for more complex algorithms such as multi-objective opti-
mization algorithms. Several popular single objective algorithms
have been extended to accommodate multiple objectives in

literature (Mirjalili et al., 2016; Deb et al., 2002; Dasheng et al.,
2007; Chalermchaiarbha and Ongsakul, 2012; Agrawal et al.,
2006).

The No Free Lunch theorem (Wolpert and Macready, 1997)
states that no single algorithm can perform well on every opti-
mization problem, encouraging the development of new meta-
heuristics. These techniques are generally inspired from various
everyday phenomena and are predominantly nature inspired. Few
such nature inspired algorithms include the Ant-Lion Optimizer
(ALO) (Mirjalili, 2015) mimicking the hunting mechanisms of ant-
lions, Artificial Bee Colony (ABC) (Karaboga and Basturk, 2007)
based on the foraging behaviour of honey bees, Grey Wolf Opti-
mizer (GWO) (Mirjalili et al., 2014) based on the hierarchy and
hunting mechanism of a pack of grey wolves, Differential Evolu-
tion (DE) (Storn and Price, 1997) based on the principle of evolu-
tion (similar to GA) and Cuckoo Search (Yang and Deb, 2009) si-
mulating the behaviour shown by some cuckoo species in laying
their eggs in the nests of other birds. Additionally, various other
algorithms that are inspired from miscellaneous phenomena are
the Teaching-Learning Based Optimization (Rao et al., 2011) which
simulates the classroom environment, the Jaya algorithm (Rao,
2016) which attempts to “approach” the best solution while
“moving away” from the worst solution, the Chaotic Golden Sec-
tion Search Algorithm (Koupaei et al., 2016) based on chaotic maps
and the golden section search, the Gravitational Search Algorithm
(Rashedi et al., 2009) based on the law of gravity and mass

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2016.04.004
0952-1976/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: pkotecha@iitg.ernet.in (P. Kotecha).

Engineering Applications of Artificial Intelligence 54 (2016) 62–79

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.04.004
http://dx.doi.org/10.1016/j.engappai.2016.04.004
http://dx.doi.org/10.1016/j.engappai.2016.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.04.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.04.004&domain=pdf
mailto:pkotecha@iitg.ernet.in
http://dx.doi.org/10.1016/j.engappai.2016.04.004


interactions, Simulated Annealing (SA) (Kirkpatrick et al., 1983)
based on the annealing process in metallurgy and Biogeography-
based Optimization (Simon, 2008) based on the distribution of
biological species over geographies. All the algorithms mentioned
above except SA work on a set of solutions (commonly known as
population) which communicate among each other to determine
an optimal solution. Conversely, SA works on a single solution, and
attempts to improve on it over iterations.

The Yin-Yang Algorithm (YYA) (Tam et al., 2011) was developed
specifically for the travelling salesman problem and is based on
transformation operators from the Chinese classic text I Ching. It is
a population based technique which utilizes the mutation and
selection operators of GA, while employing a transformation op-
erator based on the hexagram transformations of I Ching in place
of crossover. YYA shows similarities with GA in many levels, but it
bears no resemblance with the algorithm proposed in this work.
Although both the algorithms have similar names, the similarities
end there as the proposed algorithm is not population based and
has been developed for bounded real parameter single objective
optimization problems as opposed to the travelling salesman
problem (although the proposed algorithm may be extended for
the same).

Most metaheuristics model a specific phenomenon or me-
chanism based on which they tackle optimization problems. On
the contrary, the Yin-Yang-Pair Optimization (YYPO) algorithm is
not based on any specific mechanism or physical event but is
designed to explicitly balance exploration and exploitation and
thus attempts to be a realization of the Yin Yang philosophy of
balance between conflicting forces. Thus, YYPO is the authors'
implementation of how the contradicting behaviours inherent in
an evolutionary optimization algorithm (exploration and ex-
ploitation) can be balanced such that they complement each other
to effectively determine the optimal solution. The algorithm is
designed for bounded real parameter unconstrained single ob-
jective optimization, although the framework may be extended to
accommodate constrained as well as mixed integer problems by
incorporating minor modifications. For instance, the algorithm can
handle constrained as well as mixed integer problems by em-
ploying the appropriate techniques from literature (Deb and
Agrawal, 1999; Deep et al., 2009).

The rest of this article is structured as follows. The algorithm is
described in detail in Section 2 along with a study of its behaviour
on a sample problem. Section 3 briefly describes the other opti-
mization algorithms which are used for a comparative perfor-
mance analysis. Section 4 discusses the benchmark problems
along with the test characteristics which are used for studying the
performance of YYPO. This performance, including the algorithm
complexities, is discussed and compared with that of the other
algorithms in Section 5. The performance of YYPO on constrained
engineering problems are presented in Section 5 as well. The work
is summarized in Section 6 along with a discussion on future
directions.

2. Algorithm description

In this section, we discuss the inspiration for the proposed al-
gorithm along with its detailed modelling. Additionally, the be-
haviour of the algorithm is studied on the two dimensional Ras-
trigin function for easy visualization.

2.1. Inspiration

Many aspects in the universe are governed by dualities, which
refers to two opposite forces or states of conflicting nature being at
work. Few examples of mundane dualities are light and darkness,

the body and the mind, male and female, good and bad or simply
life and death. In the field of science, the wave-particle relation-
ship, positive and negative charges, constants and variables or the
binary digits 1 and 0 form typical examples. These dualities are
depicted in the Chinese philosophy as Yin and Yang, two com-
plementary and interdependent extremes that would not exist
without the other. One aspect gradually changes to the other and
this cycle is constantly being repeated, thus the balance between
these two aspects results in harmony.

In the field of evolutionary computing, exploitation and ex-
ploration represent two conflicting behaviours which work to-
gether for solving a problem, and a right balance between them is
integral to the performance of the algorithm. The correlation of
these behaviours with Yin and Yang is apparent, and this has been
the inspiration behind the algorithm.

2.2. Modelling the algorithm

In this algorithm, all the decision variables are handled in their
normalized form (between 0 and 1) and are scaled appropriately
for functional evaluation with the help of the variable bounds.
YYPO employs two points (P1 and P2) among which one of the
points (point P1) is designed to focus on exploitation, while the
other (point P2) is designed to focus on exploration of the variable
space. These points provide the flexibility to establish a balance
between the exploration and exploitation, and this is expected to
lead to an ideal performance. The points P1 and P2 act as centres to
explore the hypersphere volumes in the variable space defined by
radii of δ1 and δ2 respectively. These radii are self-adaptive such
that δ1 has a tendency to periodically decrease and δ2 to increase.
It should be noted that δ1 and δ2 are not user defined parameters
and simulate a converging–diverging couple of hyperspheres. The
algorithm consists of two main stages, the splitting stage and the
archive stage. The splitting stage is encountered at every iteration
and is used to explore the hypersphere with the radii (δ) around
the two points whereas the archive stage is encountered at dy-
namic intervals of iterations (I) and updates δ1 and δ2 using a user-
defined expansion/contraction factor (α). In the following discus-
sion, D is used to denote the problem dimension (number of de-
cision variables of the problem).

The algorithm begins with the generation of two random
points in the domain of [0, 1]D and evaluating their fitness. The
fitter of the two points is assigned as P1 and the other as P2. The
required parameters in terms of the minimum and maximum
number of archive updates (Imin and Imax) and the expansion/
contraction factor (α) are to be specified and the values of δ1 and
δ2 are set at 0.5. The number of archive updates is randomly
generated between (Imin and Imax). Subsequent to this, the iteration
loop is initiated and the fitness of the two points are compared. If
P2 is fitter than P1, the points as well as their corresponding δ
values are interchanged, ensuring that the iteration starts with the
fitter point as P1. Both the points are stored in the archive and
each point along with its δ enters the splitting stage.

2.2.1. Splitting stage
The inputs to the splitting stage are one of the points (P1 or P2)

along with its corresponding search radii (δ1 and δ2). Although
both points undergo the splitting stage, only a single point (re-
ferred as P) along with its search radii (δ) undergoes the splitting
stage at a time. The splitting stage is designed so as to generate
new points in the hypersphere (around the point P with the radius
δ) at directions as varied as possible, while maintaining a level of
randomness. This is implemented by one of the following two
methods and is decided based on equal probability.

– One-way splitting: In this method, 2D identical copies of the

V. Punnathanam, P. Kotecha / Engineering Applications of Artificial Intelligence 54 (2016) 62–79 63



Download English Version:

https://daneshyari.com/en/article/380214

Download Persian Version:

https://daneshyari.com/article/380214

Daneshyari.com

https://daneshyari.com/en/article/380214
https://daneshyari.com/article/380214
https://daneshyari.com

