
Linear algorithm for conservative degenerate pattern matching

Maxime Crochemore, Costas S. Iliopoulos, Ritu Kundu, Manal Mohamed n, Fatima Vayani
Department of Informatics, King's College London, London, UK

a r t i c l e i n f o

Available online 28 January 2016

Keywords:
Degenerate string
Pattern matching
Algorithm

a b s t r a c t

A degenerate symbol ~x over an alphabet Σ is a non-empty subset of Σ, and a sequence of such symbols is a
degenerate string. A degenerate string is said to be conservative if its number of non-solid symbols is
upper-bounded by a fixed positive constant k. We consider here the matching problem of conservative
degenerate strings and present the first linear-time algorithm that can find, for given degenerate strings
~P and ~T of total length n containing k non-solid symbols in total, the occurrences of ~P in ~T in O(nk) time.

& 2016 Published by Elsevier Ltd.

1. Introduction

Degenerate or indeterminate strings are found in Biology, Musi-
cology, Cryptography, and Data-mining and Web-mining applica-
tions. They are defined by the existence of one or more positions
which are represented by sets of symbols, instead of a single
symbol. In conservative degenerate strings, the number of such
positions is bounded by k. In music, single notes may match
chords. In encrypted and biological sequences, a position in one
string may match exactly with various symbols in other strings.
Previous algorithmic research of degenerate strings has been
focused on pattern matching.

Typographical mistakes, different spellings of the same words
based on locale, different formatting conventions, or data transfor-
mation errors give rise to inconsistencies in the string data-sets used
by data-mining or web-mining applications. Therefore, one symbol of
the data-set may match with a set of symbols in the query string
while searching or retrieving information in such cases. For example,
‘analyse’ and ‘analyze’ have same semantic meaning but are spelled
differently in British and American English; thus a query involving the
word can be represented as a degenerate string with the set fs; zg at
the 6th position. Some other domains where pattern matching using
degenerate strings may lead to better performance include, but are
not limited to, query suggestions in search-engines, spell-checking,
spam filtering, and product-search and recommendation in e-
commerce applications.

Pattern matching in degenerate strings is particularly relevant in
the context of coding biological sequences. Due to the degeneracy of
the genetic code, two dissimilar DNA sequences can be translated into
two identical protein sequences. Without taking this degeneracy into
account, many associations between biological entities can be over-
looked. For example, the following six DNA codons are all translated

into the amino acid Leucine: TTA, TTG, CTT, CTC, CTA and CTG. This
example highlights the significance of solving problems relating to
degeneracy in strings. In fact, special symbols to represent sets of DNA
symbols have long been established by the IUPAC-IUBMB Biochemical
Nomenclature Committee (Cornish-Bowden, 1985). For example, R
represents any purine (A or G), Y represents any pyrimidine (C, T or U)
and N represents any nucleic acid. An example of practical implica-
tions of such research is in the design of primers for cloning DNA
sequences using PCR (Polymerase Chain Reaction). Degenerate pri-
mers are used when their design is based on protein sequences, which
can be reverse-translated to nk different sequences, where n is the
length of the sequence.

Another example, focused instead on protein sequences, is
sequence motif searching. Sequence motifs are conserved patterns
found when aligning proteins which have similar functions. The
motifs, therefore, are considered to be important functional domains
of the proteins. PROSITE (Sigrist et al., 2013) is a database which stores
such motifs, detailing their sequence signatures, listing the proteins in
which they occur, and describing their functions (if known). The fol-
lowing is an example of a motif signature, taken from PROSITE
(PDOC00930): FED[LV]IA[DE][PA], where a set of possible symbols for
a degenerate position is given in square brackets. This motif is found
in caveolins, a family of membrane proteins. Currently, this family
consists of 80 known proteins, 74 of which contain this motif.

This paper introduces an algorithm which is a significant
improvement from those published previously. The first significant
contribution for the problem of pattern matching of degenerate
strings was in 1974 (Fischer and Paterson, 1974), and was later
improved (Muthukrishnan and Palem, 1994). Later still, faster algo-
rithms for the same problem were proposed (Indyk, 1998; Kalai,
2002). Since, many practical methods have been suggested (Holub et
al., 2008; Smyth and Wang, 2009; Rahman et al., 2007), as well as
variations of the problem considered. For example, a non-practical
generalised string matching algorithm was introduced by Abra-
hamson (1987). Most recently, Crochemore et al. (2014) reported an

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2016.01.009
0952-1976/& 2016 Published by Elsevier Ltd.

n Corresponding author.

Engineering Applications of Artificial Intelligence 51 (2016) 109–114

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.01.009
http://dx.doi.org/10.1016/j.engappai.2016.01.009
http://dx.doi.org/10.1016/j.engappai.2016.01.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.01.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.01.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.01.009&domain=pdf
http://dx.doi.org/10.1016/j.engappai.2016.01.009

algorithm to find the shortest solid cover in a degenerate string with
time complexity Oð2kÞ. We report here a major improvement in time:
O(kn). Further to the problem of pattern matching, the linear algo-
rithm reported here can be applied to many different problems,
including finding cover and prefix arrays.

The rest of the paper is organised in the following format: The
next section introduces the vocabulary and the notions that will be
used in this paper. Section 3 formally defines the problem and
presents the algorithm we have proposed. The algorithm is ana-
lysed in Section 4 and experimental results are presented in
Section 5. Finally, Section 6 concludes the paper.

2. Preliminaries

To provide an overview of our results we begin with a few defi-
nitions, generally following Rahman et al. (2007) and Crochemore
et al. (2014). An alphabet Σ is a non-empty finite set of symbols of size
jΣ j . A string over a given alphabet is a finite sequence of symbols. The
length of a string x is denoted by jxj . The empty string is denoted by ε.
The set of all strings over an alphabet Σ (including empty string ε) is
denoted by Σn.

A degenerate symbol ~x over an alphabet Σ is a non-empty
subset of Σ, i.e., ~xDΣ and ~xa∅. j ~x j denotes the size of the set
and we have 1r j ~x jr jΣ j . A finite sequence ~X ¼ ~x1 ~x2… ~xn is said
to be a degenerate string if ~xi is a degenerate symbol for each i from
1 to n. In other words, a degenerate string is built over the potential
2jΣ j �1 non-empty sets of letters belonging to Σ. The number of
the degenerate symbols, n here, in a degenerate string ~X is its
length, denoted as j ~X j . For example, ~X ¼ ½a; b�½a�½c�½b; c�½a�½a; b; c� is a
degenerate string of length 6 over Σ ¼ ½a; b; c�. If j ~xi j ¼ 1, that is, ~xi
represents a single symbol of Σ, we say that ~xi is a solid symbol
and i is a solid position. Otherwise ~xi and i are said to be non-solid
symbol and non-solid position respectively. For convenience we
often write ~xi ¼ c (cAΣ), instead of ~xi ¼ ½c�, in case of solid sym-
bols. Consequently, the degenerate string ~X mentioned in the
example previously will be written as ½a; b�ac½b; c�a½a;b; c�. A string
containing only solid symbols will be called a solid string. Also as a
convention, capital letters will be used to denote strings while
small letters will be used for representing symbols. Furthermore,
the degeneracy will be indicated by a tilde, for example, ~X denotes
a degenerate string while a plain letter like X represents a solid
string. The empty degenerate string is denoted by ~ε.

A conservative degenerate string is a degenerate string where
its number of non-solid symbols is upper-bounded by a fixed
positive constant k. The concatenation of degenerate strings ~X and
~Y is ~X ~Y . A degenerate string ~V is a substring (resp. prefix, suffix) of a
degenerate string ~X if ~X ¼ ~U ~V ~W (resp. ~X ¼ ~V ~W , ~X ¼ ~U ~V) for some
degenerate strings ~U and ~W . By ~X ½i::j�, we represent a substring
~xi ~xiþ1… ~xj of ~x.

For degenerate strings, the notion of symbol equality is extended
to single-symbol match between two degenerate symbols in the fol-
lowing way. Two degenerate symbols ~x and ~y are said to match
(represented as ~x � ~y) if ~x \ ~ya∅. Extending this notion to degen-
erate strings, we say that two degenerate strings ~X and ~Y match
(denoted as ~X � ~Y) if j ~X j ¼ j ~Y j and corresponding symbols in ~X and
~Y match, i.e., for each i¼ 1;…; j ~X j we have ~xi � ~yi. Note that the

relation E is not transitive. A degenerate string ~X is said to occur at
position i in another degenerate (resp. solid) string ~Y (resp. Y) if ~X �
~Y ½i€iþj ~X �j �1� (resp. ~X � Y½i€iþj ~X �j �1�).

3. Conservative degenerate string matching

Problem 1. Given a conservative degenerate pattern ~P with k
non-solid symbols, and a solid text T, find all positions in T at
which ~P occurs.

Example 1. We consider a degenerate pattern, ~P ¼ a½bc�da½bd�
with k¼2 and a text, T¼dacdabdadcabdac. Table 1 shows that ~P
occurs in T at positions 2 and 5.

For convenience, we compute a table Pre½k; jΣ j � such that for
each non-solid position i (1r irk) and each letter aAΣ, we have
Pre½i; a� ¼ 1 if aA ~P ½i� and 0 otherwise. After such OðkjΣ j Þ-time
preprocessing, we can check in Oð1Þ time whether a non-solid
position in ~P matches a position in T or not.

3.1. An outline of our approach

Our algorithm to solve Problem 1 is built on the top of an
adapted version of the sequential algorithm presented by Landau
and Vishkin to find all occurrences of a (solid) pattern P of length
m in a (solid) text T of length n with at most e differences each
(Landau and Vishkin, 1989), where a difference can be due to
either a mismatch between the corresponding characters of the
text and the pattern, or a superfluous character in the text, or a
superfluous character in the pattern. The modification required for
our strategy is to treat only mismatches as the differences in
Landau and Vishkin's algorithm. On the lines of the original
Landau and Vishkin's algorithm, the modified one works in the
following two steps:

1. Step 1: Compute the suffix tree of the string obtained after
concatenating the text, the pattern and a character # which is
not present in Σ [Λ, i.e., TP#; using the serial algorithm of
Weiner (1973).

2. Step 2: LetMismatchi;j be the position in the pattern at which we
have jth mismatch (when defined) between T ½iþ1€iþm� and
P½1 €m�. In other words, Mismatchi;j ¼ f represents jth mismatch
from left to right and implies that tiþ f apf . In this step, we find
Mismatchi;j for each i and j such that 0r irn�m and 1r jrc
þ1 where c denotes the maximum of the two: e and the total
number of mismatches between T½iþ1€iþm� and P½1 €m�. If some
Mismatchi;j ¼mþ1, it signifies that there is an occurrence of the
pattern in the text, starting at t½iþ1�, with at most e mis-
matches. Mismatchi;j can be computed from Mismatchi;j�1 as
follows:
Let LCAsi;sj be the lowest common ancestor (in short LCA) of the
leaves of the suffixes T ½siþ1;n� and P½sjþ1� in the suffix tree
and j LCAsi;sj j denotes its length. Mismatchi;j�1 ¼ f implies that
T ½iþ1€iþ f � and P½1€f � is matched with j�1 mismatches. We want
to find the largest q such that T ½iþ f þ1€iþ f þq� ¼ P½f þ1€f þq�

Table 1
Occurrence of ~P in T.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t d a c d a b d a d c a b d a c

Matches a ½bc� d a ½bd�
a ½bc� d a ½bd�

M. Crochemore et al. / Engineering Applications of Artificial Intelligence 51 (2016) 109–114110

Download English Version:

https://daneshyari.com/en/article/380226

Download Persian Version:

https://daneshyari.com/article/380226

Daneshyari.com

https://daneshyari.com/en/article/380226
https://daneshyari.com/article/380226
https://daneshyari.com

