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a b s t r a c t

In this paper, a kernel choice method is proposed for domain adaption, referred to as Optimal Kernel
Choice Domain Adaption (OKCDA). It learns a robust classier and parameters associated with Multiple
Kernel Learning side by side. Domain adaption kernel-based learning strategy has shown outstanding
performance. It embeds two domains of different distributions, namely, the auxiliary and the target
domains, into Hilbert Space, and exploits the labeled data from the source domain to train a robust
kernel-based SVM classier for the target domain. We reduce the distributions mismatch by setting up a
test statistic between the two domains based on the Maximum Mean Discrepancy (MMD) algorithm and
minimize the Type II error, given an upper bound on error I. Simultaneously, we minimize the structural
risk functional. In order to highlight the advantages of the proposed method, we tackle a text classifi-
cation problem on 20 Newsgroups dataset and Email Spam dataset. The results demonstrate that our
method exhibits outstanding performance.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Conventional machine learning methods universally assume
that the training data and the test data come from the same dis-
tribution. Unfortunately for many applications, it is difficult to
obtain enough labeled data for training classifiers. Recently, many
researchers have been focusing on cross-domain adaption which
aims at solving a learning problem in the target domain by uti-
lizing training data in the source domain, while these two domains
may have different distributions (Zhong et al., 2012; Pan et al.,
2011). In practice, the domain adaptive learning strategy has been
successfully applied to real-time applications, such as multi-task
clustering (Zhang and Zhou, 2012), WiFi localization (Pan et al.,
2008), action recognition (Wu et al., 2011), sentiment classification
(Blitzer et al., 2007), visual event recognition (Duan et al., 2012a;
Xu and Chang, 2008), object detection (Vzquez et al., 2011, 2014)
and visual concept classification (Jiang et al., 2009; Yang et al.,
2007; Jiang et al., 2008). However, compared with non-learning
methods (Dong et al., 2012; Dong and Izquierdo, 2008), adaptive
learning has more extensive applications.

To take the advantage of all labeled patterns for both auxiliary
and target domains, Daume (2007) proposes a Feature Replication
method to augment features for cross-domain learning. The

augmented features are then used to construct a kernel function
for Support Vector Machine training. Yang et al. (2007) propose
Adaptive SVM for visual concept classification, in which the new
classifier f T ðxÞ is adapted from an existing classifier f AðxÞ trained
from the source domain. Cross-domain SVM proposed by Jiang
et al. (2009) uses k-nearest neighbors from the target domain to
define a weight for each auxiliary pattern, and then the SVM
classifier is trained with the re-weighted auxiliary patterns. More
recently, Jiang et al. (2009) propose a method of mining the rela-
tionship among different visual concepts for video concept
detection. They first build a semantic graph which can be adapted
in an online fashion to fit the new knowledge mined from the test
data. However, these methods do not utilize unlabeled patterns
from the target domain. Such unlabeled patterns can also be used
to improve the classification performance.

When there are only a few or even no labeled patterns available
in the target domain, the auxiliary patterns or the unlabeled target
patterns can be used to train the target classifier. Several cross-
domain learning methods are proposed to cope with the incon-
sistency of data distributions. These methods re-weighted the
training samples from the source domain by using unlabeled data
from the target domain so that the statistics of samples from
both domains are matched. Duan et al. (2012a,b) propose a cross-
domain kernel learning framework, which learns a kernel function
and classifier by minimizing both the structural risk functional and
the distribution mismatch between the labeled and unlabeled
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samples from the auxiliary and target domains. This framework
employs a domain similarity measure based on MMD. More
recently, Duan et al. (2012a) develop a cross-domain learning
method, referred to as Adaptive Multiple Kernel Learning (A-MKL)
that has been successfully used in visual event recognition.

A common insight is that most of those domain adaption
learning methods are either variants of SVM or other kernel
methods, which map auxiliary data and target data into a feature
space for obtaining a robust SVM-based classifier, and simulta-
neously, minimize the mismatch between two different distribution
domains. The performance of a classifier strongly depends on the
choice of the kernels. Lanckriet et al. (2004) develop a nonpara-
metric kernel matrix, which involves joint optimization of the
coefficients in a conic combination of kernel matrices. One problem
is that its time complexity is too high to be applied to real appli-
cations. In recent years, many effective methods (Duan et al., 2012b,
c; Lu et al., 2014; Salah et al., 2014; Varma and Babu, 2009) have
been developed to combine multiple kernels instead of directly
learning the kernel matrix, in which the kernel function is a linear
combination of based kernel functions. However, all those methods
suppose that both test and training data are drawn from the same
distribution. Consequently, naked multiple kernel learning cannot
directly solve the problem of cross-domain learning. Because the
coefficients of combination kernel are parameterized, the training
data from source domain may degrade the performance of the
model in the target domain.

In this paper, we propose a new method on kernel choice for
cross-domain learning, which explicitly minimizes the loss due to
the bias between the data distributions of the auxiliary and target
domains, as well as the cost function of structural risk for all
labeled patterns. Type I error is the probability of wrongly
rejecting null hypothesis when the auxiliary distribution and the
target distribution are drawn from the same distribution. Type II
error is the probability of wrongly accepting null hypothesis when
the auxiliary and the target distributions are different. Given an
upper bound on Type I error, our kernel choice minimizes Type II
error. The main contribution of this paper is that multiple base
kernels are weighted to minimize the loss on the labeled examples
and the bias between the data distributions in the two domains.
Meanwhile, we minimize the bias between the source domain and
the target domain by minimizing the Type II error. While multi-
kernel method has been widely discussed (Bootkrajang and Kabán,
2014; Jia et al., 2014; Lu et al., 2014) and used (Salah et al., 2014),
our work demonstrates that the kernel choice is pivotal to cross-
domain learning.

The rest of paper is organized as follows: we briefly review the
related works in Section 2. Section 3 introduces kernel choice for
domain adaption learning. We experimentally compare the pro-
posed method with other cross-domain learning methods on the
20 Newsgroups dataset and Email Spam dataset for text classifi-
cation in Section 4. Finally, conclusion is made in Section 5.

2. Brief review of related work

Let us denote the dataset of labeled and unlabeled patterns
from the target domain as DT

l ¼ ðxTi ; yTi Þj nl
i ¼ 1 and DT

u ¼ ðxTi ; yTi Þj
nl þnu
i ¼ nl þ1, respectively, where yTi is the label of xTi , labeled patterns are
numbered 1 to nl, unlabeled patterns are numbered nlþ1 to
nlþnu. We define DT ¼DT

l ⋃DT
u as the dataset from the target

domain with the size nt ¼ nlþnu under the marginal data dis-
tribution ρ, and DA ¼ ðxAi ; yAi Þj nAi ¼ 1 as the dataset from the source
domain under the marginal data distribution ϑ. We represent the
labeled training dataset as D¼ ðxi; yiÞj ni ¼ 1, where n is the total
number of labeled patterns. The labeled training data can be from
the target domain (D¼DT

l ) or from both domains ðD¼DT
l ⋃DAÞ.

2.1. Minimize bias of distribution using test statistic

It is important to reduce the mismatch between the source
domain and the target domain distributions, and many methods
have been proposed to address this work. A classic criteria is
Kullback Leibler divergence (Rached et al., 2004). However, most
of them are parametric and need to estimate an intermediate
density. To steer clear of fussy measure, Borgwardt et al. (2006)
present a novel non-parametric statistical method, namely, Max-
imum Mean Discrepancy, which is based on Reproducing Kernel
Hilbert Space (Rosipal and Trejo, 2002):

MMDðDA;DT Þ ¼ sup
J f JH r1

ðExA � Q ½f ðxAÞ��ExT � P ½f ðxT Þ�Þ

¼ sup
J f JH r1

〈f ; ðExA � Q ½f ðxAÞ��ExT � P ½f ðxT Þ�Þ

¼ JExA � Q ½f ðxAÞ��ExT � P ½f ðxT Þ�JH ; ð1Þ

where Ex � μ½�� denotes the expectation operator under the samples
distribution μ and f(x) is any function in H. The second equality
holds as f ðxÞ ¼ 〈f ;ϕðxÞ〉H by the property of RKHS, where ϕðxÞ is the
nonlinear feature mapping of the kernel k. Note that the inner
product of ϕðxiÞ and ϕðxjÞ equals to the kernel function kð�; �Þ on xi
and xj, namely, kðxi; xjÞ ¼ϕðxiÞϕðxjÞ. An expression for the squared
MMD is

ηkðDA;DT Þ ¼ JϕðDAÞ�ϕðDT ÞJ2H ð2Þ

ηkðDA;DT Þ ¼ Exx0kðx; x0ÞþEyy0kðy; y0Þ�2Eyx0kðy; x0Þ; ð3Þ
where x, x0 � i:i:dp and y, y0 � i:i:dq. By introducing hkðx; x0; y; y0Þ ¼
kðx; x0Þþkðy; y0Þ�kðy; x0Þ�kðx; y0Þ, Eq. (2) can be rewritten as
ηk ¼ Exx0yy0hkðx; x0; y; y0Þ. By introducing hkðx; x0; y; y0Þ ¼ kðx; x0Þþ
kðy; y0Þ�kðy; x0Þ�kðx; y0Þ, Eq. (2) can be rewritten as ηk ¼ Exx0yy0hk
ðx; x0; y; y0Þ. In brief, the key point of MMD is that the distance
between distributions of two domains is equivalent to the distance
between the means of the two domains mapped into a RKHS (Pan
et al., 2008). Huang et al. (2006) develop a two-step method. The
first step is to diminish the mismatch of means of different dis-
tributions in RKHS by reweighting the examples using square
MMD. The second step is to learn a decision function that sepa-
rates patterns from two opposite classes. One difficulty is that the
performance of MMD strongly depends on the choice of kernel.
Meanwhile, these methods do not ensure that the chosen kernel is
optimal. Inspired by Gretton et al. (2012), we review the problem
of bias between the source domain and the target domain as a
two-sample test problem, which addresses the question of whe-
ther two independent samples are drawn from the same dis-
tribution. Consequently, given two example distributions: q from
source (auxiliary) domain and p from target domain, we can set up
a two-sample test which measures the similarity or bias between
the source domain and the target domain.

We select some kernels for hypothesis testing from a particular
family K of kernels, assuming kernel kðxi; xjÞ is a linear combina-
tion of a set of base kernels

kd ¼
XM
m ¼ 1

dmkm; ð4Þ

where dm40 is a set of positive coefficients,
PM

m ¼ 1 dm ¼D40.
The squared MMD becomes

ηmðDA;DT Þ ¼ JϕðDAÞ�ϕðDAÞJ2ϝ ¼
XM
l ¼ 1

dlηlðDA;DT Þ: ð5Þ

Here, it is denoted that d¼ fd1; d2;…; dMgT ARM�1;η¼ fη1;η2;…;

ηMgARM�1. Eq. (5) can be written as ηmðDA;DT Þ ¼ dTη. ηm is the
average of independent random variables, and its asymptotic dis-
tribution is given by the central limit theorem. Now we set up the
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