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a b s t r a c t

This paper presents a control scheme which uses a combination of linear Model Predictive Control (MPC)
and a Constraint Satisfaction Problem (CSP) to solve the non-linear operational optimal control of
Drinking Water Networks (DWNs). The methodology has been divided into two functional layers: first, a
CSP algorithm is used to transfer non-linear DWNs pressure equations into linear constraints on flows
and tank volumes, which can enclose the feasible solution set of the hydraulic non-linear problem during
the optimization process. Then, a linear MPC with tightened constraints produced in the CSP layer is
solved to generate control strategies which optimize the control objectives. The proposed approach is
simulated using Epanet to represent the real DWNs. Non-linear MPC is used for validation. To illustrate
the performance of the proposed approach, a case study based on the Richmond water network is used
and a realistic example, D-Town benchmark network, is added as a supplementary case study.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Water is always a critical resource for supporting human
activities and ecosystem conservation. Recently, the population
and users' requirements are increasing while water resources are
limited. This situation indicates the need for an optimal operation
of water distribution networks, especially during shortage events
as discussed in Miao et al. (2014) and Soltanjalili et al. (2013).
Management of Drinking Water Networks (DWNs) involves
objectives such as minimizing operational cost of pumps, which
represents a significant fraction of the total expenditure of a water
utility, as discussed in López-lbañez et al. (2008), or minimizing
risks of service failure (as explained in Kurek and Ostfeld, 2014).

The optimization problems associated to the operational con-
trol of DWNs are complex because of their large-scale, multiple-
input, multiple-output nature, as well as the various sources of
additive and, possibly, parametric uncertainty in DWNs. Addi-
tionally, DWNs models include both deterministic and stochastic
components and involve linear (flow model) as well as non-linear
(pressure model) equations. The use of non-linear models in
DWNs is essential for the operational control which involves
manipulating not only flows but also pressures.

Non-linear optimization refers to optimization problems where
the objective or constraint functions are nonlinear, and possibly
non-convex. No universally applicable methods exist for solving a

non-linear optimization problem when it is non-convex. Even
simple-looking problems with a small number of variables can be
extremely challenging, while problems with important number of
variables can be intractable. Non-linear optimization may be
addressed with several different approaches; each of which
involving some compromise. Local optimization methods can be
fast and can also handle large-scale problems although they do not
guarantee finding the global optimum. Alternatively, global opti-
mization is limited to be used in small problems (networks),
where computational time is not critical, because usually the
global solution search is time consuming, as discussed in Boyd and
Vandenberghe (2004).

Early optimization approaches for DWNs typically rely on a
substantially simplified network hydraulic model (by dropping all
nonlinearities, for instance) as described in Coulbeck et al. (1988),
Diba et al. (1995), Sun et al. (1995) and Papageorgiou (1983),
which is often unacceptable in practice. Other authors employ
discrete dynamic programming as presented in Can and Houck
(1984), Carpentier and Cohen (1993), Cembrowicz (1990), Murray
and Yakowitz (1979), Orr et al. (1990) and Zessler and Shamir
(1989), which is mathematically sound but only applicable to small
networks unless specific properties can be exploited to increase
efficiency.

Model Predictive Control (MPC) is a well-established class of
advanced control methods for complex large scale systems, as
explained in Rawlings and Mayne (2009) and Mayne et al. (2000).
In Ocampo-Martínez et al. (2013) and Fiorelli et al. (2013), MPC has
been successfully applied to control and optimize linear flow
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model of DWNs. When the pressure model is considered, the non-
linear functions involved will increase the computational burden
of MPC especially when the size of the network increases. Besides,
convergence to the global minimum cannot be easily guaranteed
using non-linear MPC if non-linear programming algorithms are
used. As described in Boyd and Vandenberghe (2004), for a non-
convex problem, an approximate, but convex formulation is nee-
ded. By solving the approximate problem, which can be done
easily and without an initial guess, the exact solution to the
approximate convex problem is obtained. Many methods for glo-
bal optimization require a cheaply computable lower bound on the
optimal value of the non-convex problem. In the relaxed problem,
each non-convex constraint is replaced with a looser, but convex
constraint. In Mayne et al. (2011), a similar approach based on
tube-based MPC is proposed. In this case, the way of cir-
cumventing the complexity problem is based on replacing the
non-linear MPC by an approximation about a nominal trajectory.
Trajectories are bounded by a level set of a value function that
varies in a complex way with, the state and time.

This paper mainly provides a methodology for solving large
scale complex non-linear DWNs problem using a convex approx-
imation of the problem. The solution is compared to that of a
nonlinear MPC implementation, obtained with a tool named PLIO
(Cembrano et al., 2011). Simulation results are compared using the
Richmond case study introduced in van Zyl et al. (2004). Finally,
the D-Town benchmark network, which is much more realistic as
presented in Price and Ostfeld (2014) and Iglesias-Rey et al. (2014),
is used as a supplementary case study for validation.

The aim of the proposed approach is to avoid the non-linear
optimization problem of DWNs by the combined use of linear MPC
and CSP while maintaining optimality and also feasibility with the
tightened linear constraints provided by the CSP in Streif et al.
(2014). To assess the proposed approach, the real hydraulic
behavior of the DWNs is simulated by means of Epanet (Rossman,
2000), which simulates DWNs using the input optimal solution
provided by MPC. As shown in Fig. 1, the whole controlling
methodology works in a two-layer structure as initially proposed
in Sun et al. (2014a): CSP is the first step of this methodology and
it constitutes the upper layer used for converting the non-linear
hydraulic pressure constraints into the linear MPC constraints.
MPC is the lower layer producing optimal set-points for control-
ling actuators (pumps and valves), according to the defined
objective functions including minimizing operational costs of
pumps, risks and safety goals.

The remainder of the paper is organized as follows: The control-
oriented modelling methodology considering both flow and pres-
sure dynamics is presented in Section 2. Then, in Section 3, the
operational control problem is introduced in the context of non-
linear MPC. In Section 4, the definition of CSP and also the proposed
CSP-MPC control scheme are explained in detail. Section 5 sum-
marizes the results and validations using the Richmond case study.

Section 6 provides a supplementary application based on a more
complex example, a benchmark network called D-Town. Finally,
Section 7 contains the conclusions and future research plans.

2. Control-oriented modelling methodology

Drinking Water Networks (DWNs) generally contain tanks,
which store the drinking water at appropriate head level (eleva-
tion and pressure) to supply demand, a network of pipes and a
number of demands. Valves and/or pumping stations are the ele-
ments that allow to manipulate the water flow according to a
specific policy and to supply water requested by the network users
at appropriate service pressures.

The DWNs can be considered as composed of a set of con-
stitutive elements, which are presented below including first the
flow model and then the pressure model.

2.1. Flow model

2.1.1. Reservoirs and tanks
Water reservoirs and tanks play an important role in DWNs

since they enable demand management, ensure water supply (e.g.,
in case of unexpected demand changes or in case of emergencies)
and allow for the modulation of pump flow rate as discussed in
Batchabani and Fuamba (2014) and Lee et al. (2013). Moreover,
they provide the entire network with the water storage capacity.
The mass balance expression of these storage elements relates the
stored volume V, the manipulated inflows qjin and outflows qhout
(including the demand flows as outflows). The ith storage element
can be described by the discrete-time difference equation

Viðkþ1Þ ¼ ViðkÞþΔt
X
j

qjinðkÞ�
X
h

qhoutðkÞ
0
@

1
A; ð1Þ

where Δt is the sampling time and k denotes the discrete-time
instant. The physical constraint related to the admissible range of
water levels in the ith storage element is expressed as

V irViðkÞrV i; for all k; ð2Þ

where V i and V i denote the minimum and the maximum admis-
sible storage capacity, respectively. Although V i might correspond
to an empty storage element, in practice this value is normally set
as nonzero in order to maintain an emergency stored volume for
extreme circumstances.

For simplicity purposes, the dynamic behavior of these ele-
ments is described as function of volume. However, in most cases,
the measured variable is the storage water level (by using level
sensors), which implies the computation of the water volume
taking into account the tank geometry.

2.1.2. Actuators
Two types of control actuators are considered: valves and

pumps (more precisely, complex pumping stations). In the flow
model, valves and pumps are simplified and considered as similar
control elements, and their flows are taken as the manipulated
variables in the MPC problem, denoted as qu. Both pumps and
valves have lower and upper physical limits, which are taken into
account as system constraints. As in (2), they are expressed as

qu i
rquiðkÞrqu i; for all k; ð3Þ

where qu i and qu i denote the minimum and the maximum flow
capacity, respectively.Fig. 1. The multi-layer control scheme.
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