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a b s t r a c t

Assessment of airport noise pollution mainly depends on the correlation between aircraft class, noise
measured and flight path geometry. Regulation, evaluation and especially certification procedures
generally establish that previous correlation cannot be carried out using aircraft navigation systems data.
Additionally, airport noise monitoring systems generally use aircraft noise signals only for computing
statistical indicators. Consequently, methods to acquire more information from these signals have been
explored so as to improve noise estimation around airports. In this regard, this paper introduces a new
model for aircraft class recognition based on take-off noise signal segmentation and dynamic
hierarchical aggregation of K parallel neural networks outputs Ok

p . A single hierarchy is separately
defined for every class p, mainly based on the recall and precision of neural network NNk|k¼1,2,…,K.
Similarly, the dynamics proposed is also particular to each class p. The performance of the new model is
benchmarked against models in literature over a database containing real-world take-off noise
measurements. The new model performs better on the abovementioned database and successfully
classifies over 89% of measurements.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Noise pollution around airports is a growing concern for
aeronautical authorities (ICAO, 2007, 2008a, 2008b; MASSPORT,
2015b), which has been addressed in the same way as other
environmental issues in order to lower noise contamination in
large cities (Elmenhorst et al., 2012; López-Pacheco et al., 2014;
Sánchez-Fernández, 2011; Sánchez-Fernández et al., 2013). For
instance, a noise regulation at the Ronald Reagan National Airport
in Washington D.C. restricts nighttime operations of aircraft
classes that do not comply with certain noise certification levels
(MWAA, 1981). Additionally, the International Civil Aviation Orga-
nization (ICAO) encourages noise-related charges associated with
landing fees, possibly by means of surcharges or rebates (ICAO,
2012). In this respect, several major airports have implemented
monitoring systems to assess environmental noise pollution
(MASSPORT, 2015a; MWAA, 2015). Furthermore, multiple models

for computing noise contours around airports have been defined
(ECAC, 2005a, 2005b; FAA, 2013; ICAO, 2008c; SAE, 1986, 2012a,
2012b). Previous approaches correlate noise statistical indicators
such as the equivalent continuous sound level Leq

� �
or the effective

perceive noise level LEPNð Þ with the aircraft class responsible by
means of single events modeling according to default or typical
operations.

In any of the above cases, aircraft noise signals are only used for
computing statistical indicators. In this sense, many approaches
have been designed so as to obtain more information from these
signals. For example, methods to identify the aircraft class using
feature extraction from take-off noise signals have been developed
(Márquez-Molina et al., 2014; Rojo Ruiz et al., 2008; Sánchez-
Fernández et al., 2007, 2013; Sánchez-Pérez et al., 2013). In
addition, microphone arrays have been used for creating a passive
acoustic method for aircraft states estimation based on the
Doppler Effect in Martin et al. (2014), a trust reverse noise
detection system in Asensio et al. (2013) and active control of
aircraft fly-over sound transmission through an open window in
Pàmies et al. (2014). Similarly, a method to estimate the georefer-
enced flight path during take-off is introduced in Sánchez-Pérez
et al. (2014), something relevant for noise certification procedures,
where the flight path determination in order to correlate noise
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levels produced by a particular aircraft class at certain points, must
be performed without the aircraft navigation system data (FAA
and DOT, 2014). Also, discrimination between aircraft noise and
non-aircraft sources has been explored in Asensio et al. (2010) and
Genescà et al. (2013, 2009). In this sense, the Metropolitan
Washington Airports Authority (MWAA) holds an aircraft noise
monitoring system displaying community noise levels splitting
overflights from non-aircraft sources (MWAA, 2015).

Concerning aircraft class identification, models based on fea-
ture extraction from adjacent take-off noise signal segments have
proven to outperform recognition using the whole signal
(Sánchez-Pérez et al., 2013). The motivation for segmentation
arises from considering the aircraft take-off noise as a non-
stationary process with a dynamic spectrum. Its main goal is
splitting the signal into K segments with different spectral char-
acteristics. Neural networks have been used with excellent results
in order to identify aircraft classes based on supervised training
using patterns containing features extracted from the take-off
noise signal (Márquez-Molina et al., 2014; Sánchez-Pérez et al.,
2013; Sánchez Fernández et al., 2013). Moreover, the pattern
recognition model introduced by Sánchez-Pérez et al. (2013) uses
a neural network NNk for each signal segment k and LPC-based
features (Linear Predictive Coding). Also, human auditory features
such as MFCC (Mel Frequency Cepstral Coefficients) and 1/24
Octave Bands are concurrently evaluated in Márquez-Molina
et al. (2014) by two neural networks. Both models define an
aggregation algorithm for weighting the multiple outputs pro-
duced by all neural networks. Aggregation in Sánchez-Pérez et al.
(2013) is based on a dynamic weighting of output Ok

p with respect
to class p from the neural network NNk, which is trained to deal
with LPC-based features from signal segment k. However, weight
wk

p for output Ok
p is the same for every aircraft class p¼ 1;2;…; P.

On the other hand, aggregation in Márquez-Molina et al. (2014) is
based on the weighted sum

P
kw

k
pO

k
p, but weight wk

p is static and
does not change according to context (in this case k represents the
feature type used). Moreover, the previous aggregation methods
are not designed to offset the best classifier with respect to class p
when it outputs a false positive for that same class p. What is
more, weight wk

p is computed taking into account only true
positives with respect to class p.

In this paper a new model for aircraft class identification based
on take-off noise signal segmentation and dynamic hierarchical
aggregation of K parallel neural networks outputs Ok

p is proposed.
The model dynamically weighs each output Ok

p from neural net-
work NNk with respect to class p based on a neural network
hierarchy. The hierarchy is determined based on a ranking criter-
ion separately defined for every class p according to the validation
performance during training. The ranking criterion introduced in
this paper is based on the score Fβ which uses recall and precision
measures with respect to each class p.

The remainder of the paper is organized as follows.
Section 2 reviews aircraft class recognition based on take-off
noise signal segmentation. Section 3 provides a detailed
theoretical and practical definition of the new model. Section 4
presents the new model results along with the comparison
against the literature model followed by the conclusions drawn
in Section 5.

2. Review

Aircraft class identification using take-off noise signals has
been mainly based on the extraction of features related to the
signal spectrum. However, the aircraft noise signal is a non-
stationary process that leads to a variable spectrum during take-
off. In this respect, a take-off noise signal segmentation method is

introduced by Sánchez-Pérez et al. (2013). Its motivation arises
from assuming that using the whole signal could involve masking
certain temporal features. The earlier segmentation method
extracts two segments of two second on both sides of Tmid

(K¼4), which is a common point for all signals determined as
the time instant corresponding to the local maximum, higher or
equal to 0.85[max E(q)] with highest Z(q) value, where E(q) is the
energy profile calculated using (1) and Z(q) is the zero crossing
profile computed using (2) and (3).

E qð Þ ¼
Xlþ SE

x ¼ l

y xð Þ
�� ��2 ð1Þ

F xð Þ ¼
1; sign y xð Þ½ �asign y xþ1ð Þ½ �
0; otherwise

(
ð2Þ

Z qð Þ ¼
Xlþ SE �1

x ¼ l

F xð Þ ð3Þ

8qjq¼ 1;2;⋯;
N�SEð Þ

SE 1�OSE=100
� �

$ %
;

l¼ q�1ð Þ SE 1� OSE

100

� �� �

where q denotes a fragment of the signal y(x), SE represents the q
fragment length, N denotes the signal length, sign[] symbolizes the
sign operator, OSE indicates the overlapping percentage, and ⌊c
denotes the lower nearest integer.

The recognition model introduced by Sánchez-Pérez et al.
(2013) defines a neural network NNk for each signal segment k.
In this work, outputs from NNk with respect to each aircraft class

p¼ 1;2;…; P are referred as Ok
p. The foregoing model introduces

the dynamic hierarchical weighting of outputs Ok
p according to

(4) and (5). The predicted label y for an input x1;…; xKf g is
estimated after neural network NNk has evaluated pattern xk
resulting in ,Ok

p which is dynamically weighted by wkþ f kð Þ. Value
of wk is computed with (6) based on the validation error ek of
neural network NNk during training, while function f(k) returns an
adjustment factor αk according to the two prior lower ranked

networks outputs O
ij r!ðiÞ ¼ r!ðkÞ �2
p and O

jj r! jð Þ ¼ r!ðkÞ �1
p . Value αk is

calculated using (7). Vector r! represents neural networks
NNk j k¼ 1;2;…;K ranks according to weights wk j k¼ 1;2;…;K

so that r! kð Þ contains the ascendant sorted position of weight wk as

revealed in (8) and (9). Therefore, component r! kð Þ denotes the
rank of neural network NNk where a higher value indicates a
higher importance and rank.

y x1;…; xKð Þ ¼ argmax
p ¼ 1;2;…;P

O1
1 O2

1 ⋯ OK
1

O1
2 O2

2 ⋯ OK
2

⋮ ⋮ ⋮
O1
P O2

P ⋯ Ok ¼ K
p ¼ P

2
666664

3
777775

w1þ f 1ð Þ
w2þ f 2ð Þ

⋮
wk ¼ K þ f Kð Þ

2
66664

3
77775
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wkþ f kð Þð Þ
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