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a b s t r a c t

Given an undirected graph with costs associated with each edge as well as each pair of edges, the
quadratic minimum spanning tree problem (QMSTP) consists of determining a spanning tree of mini-
mum cost. QMSTP is useful to model many real-life network design applications. We propose a three-
phase search approach named TPS for solving QMSTP, which organizes the search process into three
distinctive phases which are iterated: (1) a descent neighborhood search phase using two move
operators to reach a local optimum from a given starting solution, (2) a local optima exploring phase to
discover nearby local optima within a given regional area, and (3) a perturbation-based diversification
phase to jump out of the current regional search area. TPS also introduces a pre-estimation criterion to
significantly improve the efficiency of neighborhood evaluation, and develops a new swap-vertex
neighborhood (as well as a swap-vertex based perturbation operator) which prove to be quite powerful
for solving a series of special instances with particular structures. Computational experiments based on
7 sets of 659 popular benchmarks show that TPS produces highly competitive results compared to the
best performing approaches in the literature. TPS discovers improved best known results (new upper
bounds) for 33 open instances and matches the best known results for all the remaining instances.
Critical elements and parameters of the TPS algorithm are analyzed to understand its behavior.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Network design is an extremely challenging task in numerous
resource distribution systems (e.g., transportation, electricity, tel-
ecommunication, and computer networks). Many of these systems
can conveniently be modeled as some variants of the spanning or
Steiner tree problem (STP). In this paper, we focus on the quadratic
minimum spanning tree problem (QMSTP) which has broad practical
applications. Let G¼ ðV ; EÞ be a connected undirected graph with
jV j ¼ n vertices and jEj ¼m edges. Let c : E-R be a linear cost
function for the set of edges and q : E � E-R be a quadratic cost
function to weigh each pair of edges (without loss of generality,
assume qee ¼ 0 for all eAE). QMSTP requires to determine a
spanning tree T ¼ ðV ;XÞ, so as to minimize its total cost F(T), i.e.,
the sum of the linear costs plus the quadratic costs. Naturally, as in
Cordone and Passeri (2012), this problem can be formulated as

follows:

Minimize FðTÞ ¼
X

eAE

cexeþ
X

eAE

X

f AE

qef xexf ; ð1Þ

subject to
X

eAE

xe ¼ n�1; ð2Þ

X

eAEðSÞ
xer jSj �1; 8 S� V with jSjZ3; ð3Þ

xeAf0;1g; 8 eAE; ð4Þ
where xe¼1 if edge e belongs to the solution, xe¼0 otherwise. S is
any possible subset of V (with jSjZ3) and E(S) denotes the set of
edges with both end vertices in S. Eq. (2) requires that the final
solution contains n�1 edges and Eq. (3) ensures that no cycle
exists in the solution. These two constraints together guarantee
that the obtained solution is necessarily a spanning tree.

As an extension of the classical minimum spanning tree problem
(MST) in graphs, QMSTP has various practical applications in net-
work design problems, where the linear function models the cost
to build or use edges, while the quadratic function models inter-
ference costs between pairs of edges. For example, in transporta-
tion, telecommunication or oil supply networks, the linear
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function represents the costs for building each road, communica-
tion link or pipe, and the quadratic function represents the extra
costs needed for transferring from one road (link, pipe) to another
one. Normally, the interference costs are limited to pairs of adja-
cent edges (which share a common vertex) (Maia et al., 2013,
2014; Pereira et al., 2013b, 2015), but in some special cases, the
interference costs also exist between any pair of edges. As dis-
cussed in Assad and Xu (1992), Öncan and Punnen (2010), and
Palubeckis et al. (2010), QMSTP has several equivalent formula-
tions such as the stochastic minimum spanning tree problem, the
quadratic assignment problem, and the unconstrained binary
quadratic optimization problem.

During the last two decades, QMSTP has been extensively
investigated and many exact and heuristic approaches have been
proposed. Since QMSTP is NP-hard and difficult to approximate
(Xu, 1995), exact methods are often applied only to solve very
small instances. For larger instances, heuristics are preferred to
obtain feasible solutions within a reasonable time.

As for exact methods, Assad and Xu (1992) and Xu (1995)
propose a Lagrangian branch-and-bound (B&B) method. Öncan
and Punnen (2010) combine the Lagrangian relaxation scheme
with an extended formulation of valid inequalities to obtain
tighter bounds. Cordone and Passeri (2012) improve the Lagran-
gian B&B procedure in Assad and Xu (1992). Pereira et al. (2013a)
introduce a 0-1 programming formulation based on the reformu-
lation–linearization technique and derive an effective Lagrangian
relaxation. Using the resulting strong lower bounds and other
formulations, they develop two effective parallel B&B algorithms
able to solve optimally problem instances with up to 50 vertices.
Recently, based on reduced cost computation, Rostami and Mal-
ucelli (2014) combine a reformulation scheme with newmixed 0-1
linear formulations and report lower bounds on hundreds of
instances with up to 50 vertices. Exact algorithms are also pro-
posed for solving other closely related QMSTP variants. Buchheim
and Klein (2013, 2014) propose a B&B approach for QMSTP with
one quadratic term in the objective function, of which the poly-
hedral descriptions are completed in Fischer and Fischer (2013).
Pereira et al. (2013b) introduce several exact approaches (brand-
and-cut, branch-and-cut-and-price), to obtain strong lower
bounds for QMSTP with adjacency costs, for which the inter-
ference costs are limited to adjacent edges.

On the other hand, to handle large QMSTP instances, heuristics
become the main approaches to obtain good near-optimal solu-
tions within a reasonable time. For example, two greedy algo-
rithms are proposed in Assad and Xu (1992), Xu (1984), and Xu
(1995). Several genetic algorithms are implemented by Zhou and
Gen (1998) and tested on instances with up to 50 vertices. Another
evolutionary algorithm is proposed for a fuzzy variant of QMSTP
(Gao and Lu, 2005), using the Prüfer number to encode a spanning
tree. Soak et al. (2005, 2006) report remarkable results with an
evolutionary algorithm using an edge-window-decoder strategy.
In addition to these early methods, even more heuristics have
been proposed in recent years, mostly based on neighborhood
search. For example, the Tabu Thresholding algorithm (Öncan and
Punnen, 2010) alternatively performs local search and random
moves. In Palubeckis et al. (2010), an iterated tabu search (ITS) is
proposed and compared to a multi-start simulated annealing
algorithm and a hybrid genetic algorithm, showing that ITS per-
forms the best. An artificial bee colony algorithm is developed in
Sundar and Singh (2010). Cordone and Passeri (2012) adopt a
novel data structure and updating technique to reduce the amor-
tized time of neighborhood exploration from Oðmn2Þ to O(mn),
based on which they further propose a tabu search (TS) algorithm
and report a number of improved results over previous best
known results. Recently, Lozano et al. (2013) propose an iterated
greedy (IG) and a strategic oscillation (SO) heuristic, and combine

them with the ITS (Palubeckis et al., 2010) algorithm to obtain a
powerful hybrid algorithm named HSII. In addition, for the QMSTP
variant only with adjacency costs, Maia et al. develop a Pareto local
search (Maia et al., 2013) as well as several evolutionary algo-
rithms (Maia et al., 2014).

In this work, we propose a three-phase search approach named
TPS for effectively solving QMSTP, whose main contributions are as
follows.

� From the perspective of algorithm design, the proposed TPS
approach consists of three distinctive and sequential search
phases which are iterated: a descent-based neighborhood
search phase (to reach a local optimum from a given starting
solution), a local optima exploring phase (to discover more
nearby local optima within a given regional area), and a
perturbation-based diversification phase (to jump out of the
current search area and move to unexplored new areas). At a
high abstraction level, TPS shares similar ideas with other
popular search frameworks such as iterated local search (Lour-
enco et al., 2003), reactive tabu search (Bastos and Ribeiro,
2002; Cerulli et al., 2005) and breakout local search (Benlic and
Hao, 2013a, 2013b; Fu and Hao, 2014). Still the proposed
approach promotes the idea of a clear separation of the search
process into three distinctive phases which are iterated, each
phase focusing on a well-specified goal with dedicated strate-
gies and mechanisms. The proposed TPS approach also includes
two original search strategies designed for QMSTP. The first one
is a pre-estimation criterion, which boosts the efficiency of local
search by discarding a large number of hopeless neighboring
solutions (so as to avoid useless computations). The second one
is a new swap-vertex neighborhood, which complements the
conventional swap-edge neighborhood and proves to be parti-
cularly useful for tackling the challenging and special QMSTP
instances transformed from the Quadratic Assignment Problem
(QAP).

� From the perspective of computational results, TPS yields highly
competitive results with respect to the best known results and
best performing algorithms (tested on 7 sets of 659 bench-
marks). Respectively, for the 630 conventional instances, TPS
(using the same parameter setting) improves within compara-
tive time the best known results (new upper bounds) on 30
instances and matches easily the best known results for all the
remaining instances only except three cases (for which TPS also
finds improved best known results within the same cutoff time
by simply tuning some parameters). For the set of the 29
instances transformed from QAP which are known to be
extremely challenging for existing QMSTP algorithms, TPS
consistently attains the known optimal values within very
short time.

In the rest of the paper, we describe the proposed approach
(Section 2), show extensive computational results on the bench-
mark instances (Sections 3) and study several key ingredients of
the algorithm (Section 4). Conclusions are drawn in Section 5,
followed by a parameter analysis in the Appendix.

2. A three-phase search approach for QMSTP

2.1. General framework

The proposed three-phase search approach TPS for QMSTP is
outlined in Algorithm 1, which is composed of several subroutines.
Starting from an initial solution (generated by Init_Solution), the
first search phase, ensured by Descent_Neighborhood_Search,
employs a descent-based neighborhood search procedure to attain
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