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a b s t r a c t

We propose a nonparametric Bayesian model for the clustering of proportional data. Our model is based
on an infinite mixture of Beta-Liouville distributions and allows a compact description of complex data.
The choice of the Beta-Liouville as the basis of our model is justified by the fact that it has been shown to
be a good alternative to the Dirichlet and generalized Dirichlet distributions for the statistical
representation of proportional data. Using this infinite mixture, we show how a careful modeling can
achieve good results by allowing the elicitation of prior belief about the parameters and the number of
clusters through suitable learning. Indeed, we develop an efficient learning algorithm, based on
expectation propagation, to estimate the parameters of our infinite Beta-Liouville mixture model. The
feasibility and effectiveness of the proposed method are demonstrated by two challenging applications
namely action and facial expression recognition.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Statistical models are becoming increasingly important because
of their role in providing a concise picture of the data, by taking
uncertainty into account (Lewis and Catlett, 1994; Frey et al., 1995;
Rosset and Segal, 2002; Keysers et al., 2004), and then in the
development of useful algorithms for pattern recognition, computer
vision, and image processing (Yildizer et al., 2012; Liao et al., 2013).
Finite mixtures have been widely used in the past for statistical
modeling and exploring data structure (Patrick, 1968; McLachlan
and Peel, 2000; Nock and Nielsen, 2006). Images and videos
modeling and clustering is a prime example of the role mixtures
play. In practice, however, mixture-based modeling rely generally
on simplistic assumptions that may compromise modeling and
generalization capabilities. Examples of these assumptions include
supposing that the number of clusters is known in advance, which
implies that we have to rely on the practitioner ability to determine
the optimal complexity, or using a multivariate normal distribution
for modeling which disregard the nature of the data.

Infinite mixtures have been proposed to overcome the deficien-
cies related to finite mixtures and have been shown to be effective
tools in data analysis, modeling and clustering (Lau and Green,

2007). Traditionally, there has been interest in infinite mixture
models from a wide variety of disciplines including machine
learning, data mining, pattern recognition, and computer vision.
The prevalent assumption when using infinite mixture models has
been to consider that the component densities are Gaussians.
Unfortunately, the Gaussian assumption may not be met in practice
and is often violated, producing poor modeling results. This is
especially true in the case of proportional data (e.g. normalized
histograms) which are largely present and naturally generated in
several domains. Examples include the representation of textual (or
visual) documents using histograms containing the normalized
frequencies of words (or visual) words in a given dictionary
(Bouguila, 2012a). The goal of this paper is to examine another
alternative based on Beta-Liouville distribution to model suitably
proportional data. Indeed, few applications of the Beta-Liouville
mixture have appeared recently, and much of the potential of this
model has not been realized yet (Bouguila, 2011, 2012a,b). In
Bouguila (2012a), finite Beta-Liouville mixture models are applied
on scene modeling and classification, and automatic image orienta-
tion detection. In Bouguila (2012b), infinite Beta-Liouville mixture
models have been proposed and been successfully applied on text
classification and texture discrimination.

Infinite mixture-based modeling belongs to the group of non-
parametric Bayesian approaches which have been widely adopted
recently (Hirano, 2002; Chib and Hamilton, 2002; Li et al., 2007;
Ray and Mallick, 2006; Bouguila, 2012b). A challenging problem in
this context is the development of efficient learning approaches.
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Many works have shown that principled Bayesian approaches to
learning lead generally to improvement in modeling (Andrieu et al.,
2001; Utsugi and Kumagai, 2001). For a broader perspective, we
refer the interested reader to Marin and Robert (2007). Thus,
Bayesian inference has been widely used to learn infinite mixture
models and has been shown to be effective in many data modeling
problems. However, a practical disadvantage of pure Bayesian
approaches is that they require multiple integrations over variables,
which are usually analytically intractable. Generally, Monte Carlo
Markov Chain (MCMC) techniques have been adopted in this case,
yet they unfortunately involve huge computational costs (Marin
and Robert, 2007; Bouguila, 2012b). Several deterministic approx-
imation techniques have been then proposed to overcome this
problem (see, for instance, Ghahramani and Beal, 2000; Xing et al.,
2003). Among these techniques, expectation propagation (Minka,
2001) has been shown to provide good generalization capabilities
as well as computational tractability in several real life applications.

Expectation propagation is a deterministic approximation
scheme based on the minimization of a Kullback–Leibler (KL)
divergence between the true model's posterior and an approxima-
tion (Minka, 2001; Minka and Lafferty, 2002). It is an extension to
assumed-density filtering (ADF) (Maybeck, 1982) which is a one
pass, sequential approximation method. In contrast to the ADF, the
order of the input data points is not important in the expectation
propagation inference and its inference accuracy is improved by re-
using the data points many times. In Stern et al. (2009), a
probabilistic model based on expectation propagation learning
method was proposed for generating personalized recommenda-
tions of items to users of a web service. Thus, we shall adopt
expectation propagation in this paper within a learning framework
that we will develop to estimate the parameters of infinite Beta-
Liouville mixture models. The proposed approach manages to
overcome the problem of model complexity selection which has
been the topic of extensive research in the past (Hammond et al.,
1993; Cherkassky et al., 1999) and which is, in our case, automati-
cally determined in the learning process. In order to show that the
proposed approach suits the needs of real-life problems very well,
we validate it using two challenging applications namely action and
facial expression recognition.

The paper proceeds as follows. In Section 2, we present the
infinite Beta-Liouville mixture model. In Section 3, the expectation
propagation learning framework is developed. The experimental
results are presented, analyzed, and discussed in Section 4. Finally,
in Section 5, we give the conclusion.

2. Infinite Beta-Liouville mixture model

Finite mixture models are often adopted as effective tools to
capture the multimodality of the data and to reason under
uncertainity. However, one major concern regarding clustering in
general, and finite mixture modeling in particular, is the selection
of the optimal number of mixture components (Yang et al., 2011;
Bouguila, 2012a). This obstacle can be removed by assuming that
there is an infinite number of components through a Bayesian
nonparametric framework known as the Dirichlet process mixture
model. In this section, we shall first briefly review the finite Beta-
Liouville mixture model. Then, we extend it to the infinite case by
using the Dirichlet process mixture framework with a stick-
breaking representation.

2.1. Finite Beta-Liouville mixture model

Assume that a D-dimensional random vector X
!¼ ðX1;…;XDÞ

follows a Liouville distribution of the second kind with positive
parameters ðα1;…;αDÞ and density generator gð�Þ. Then, the

probability density function of X
!

is defined by Bouguila (2012a)

pðX!jα1;…;αDÞ ¼ gðuÞ ∏
D

l ¼ 1

Xαl �1
l

ΓðαlÞ
ð1Þ

where u¼ PD
l ¼ 1 Xlo1 and Xl40, l¼ 1;…;D. The mean and

covariance of the Liouville distribution are given by

EðXlÞ ¼ EðuÞ αlPD
l ¼ 1 αl

ð2Þ

CovðXa;XbÞ ¼
αaαbPl
a ¼ 1 αa

Eðu2ÞPD
l ¼ 1 αlþ1

� EðuÞ2PD
l ¼ 1 αl

 !
ð3Þ

where E(u) and Eðu2Þ are the first and second moments of a
random variable u. The variable u follows a probability density
function f ð�Þ namely the generating density, and is related to the
density generator gð�Þ in the form

gðuÞ ¼ΓðPD
l ¼ 1 αlÞ

u
PD

l ¼ 1
αl �1

f ðuÞ ð4Þ

Therefore, we can rewrite the Liouville distribution of the second
kind in Eq. (1) as

pðX!jα1;…;αDÞ ¼
ΓðPD

l ¼ 1 αlÞ
u
PD

l ¼ 1
αl �1

f ðuÞ ∏
D

l ¼ 1

Xαl �1
l

ΓðαlÞ
ð5Þ

Two important properties regarding the Liouville distribution are
noticeable: first, it has a more general covariance structure than
the Dirichlet distribution; second, similar to the Dirichlet, the
Liouville distribution is conjugate to the multinomial (Bouguila,
2012a). Motivated by the fact that the Beta distribution has a
flexible shape and can approximate nearly any arbitrary distribu-
tion, it is adopted as the generating density for u with positive
parameters α and β:

f ðujα;βÞ ¼ ΓðαþβÞ
ΓðαÞΓðβÞu

α�1ð1�uÞβ�1 ð6Þ

We then obtain the so-called Beta-Liouville distribution by sub-
stituting Eq. (6) into Eq. (5):

BLðX!j θ!Þ¼ΓðPD
l ¼ 1 αlÞΓðαþβÞ
ΓðαÞΓðβÞ ∏D

l ¼ 1
Xαl �1
l

ΓðαlÞ
XD
l ¼ 1

Xl

 !α�
PD

l ¼ 1
αl

� 1�
XD
l ¼ 1

Xl

 !β�1

ð7Þ

where θ
!

¼ ðα1;…;αD;α;βÞ are the parameters of the Beta-Liouville
distribution. It is noteworthy that when the density generator has a
Beta distribution with parameters

PD
l ¼ 1 αl and αDþ1, Eq. (1) is

reduced to the Dirichlet distribution with parameters α1;…;αDþ1.
Therefore, the Beta-Liouville distribution includes the Dirichlet as a
special case. Given a set of N vectors X ¼ fX!1;…; X

!
Ng, where each

D-dimensional vector X
!

i ¼ ðXi1;…;XiDÞ follows a finite Beta-
Liouville mixture model with M components, then

pðX!i j π!; θ
!

Þ¼
XM
j ¼ 1

πjBLðX
!

i jθjÞ ð8Þ

where θj ¼ ðαj1;…;αjD;αj;βjÞ are the parameters of the Beta-
Liouville distribution corresponding to component j. Moreover,
π!¼ ðπ1;…;πMÞ represents the vector of mixing probabilities which
are positive and sum to one.

2.2. Infinite Beta-Liouville mixture model via Dirichlet process

A conventional finite mixture model can be extended to have an
infinite number of mixture components using a Dirichlet process with
a stick-breaking representation (Sethuraman, 1994; Ishwaran and
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