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a b s t r a c t

We study the challenging problem to classify samples into a large number of classes, and propose the idea of
using different Dimensionality-Reduction (DR) projections for different classes of samples. Based on this
intuitive idea, the traditional Linear Discriminant Analysis (LDA) and the trace-ratio LDA are formulated to their
corresponding newmulti-subspace objectives. We justify that certain effects of class-adaptive feature selection
are naturally achieved via our multi-subspace DR methods. Experiments on seven datasets show that, our
multi-subspace trace-ratio LDA outperform its ratio-trace and single-subspace counterparts, and its advantage
is more apparent when the number of classes to be classified is large.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Linear Discriminant Analysis (LDA) (Belhumeur et al., 1997; Duda et
al., 2000; Fukunaga, 1991) is a family of very widely used supervised
Dimension Reduction (DR) techniques in the statistics research areas.
The original Fisher's LDA (Fisher, 1936) only finds one projection
direction u (i.e. a vector) for discriminating two classes, and its
objective, namely the Fisher's criterion, is to maximize the ratio of
between-class scatter matrix Sb to within-class scatter matrix Sw:

JðuÞ ¼max
u

juTSbuj
juTSwuj

ð1Þ

Note that, here u is a vector so uTSbu and uTSwu are two scalars.
Thus, it is legitimate to use the term “ratio” here, and | � | is the absolute
value operator. In statistical applications, e.g. face recognition and
image annotation, we usually have a large number of image classes,
hence the multi-class LDA is more desired. When r (r41) projection
directions U (i.e. a matrix) are needed, both UTSbU and UTSwU are r by r
matrices, and their ratio cannot be computed directly. In the tradi-
tional LDA, typically the determinant ratio is used:

JðUÞ ¼max
U

jUTSbU j
jUTSwU j

ð2Þ

where | � | is the matrix determinant operator. The reason to use
determinant ratio is that, the scattering distribution of the samples is
directly proportional to the determinant of the scatter matrix (Duda

et al., 2000; Fukunaga, 1991). As another word, the absolute value of
the determinant of a group of real-valued vectors is equal to the
volume of the parallelepiped spanned by these vectors (Strang, 1993).
Before introducing the way to optimize Eq. (2), we firstly re-visit the
following lemma (Zhou and Huang, 2001):

Lemma 1. Scatter Ratio Invariance: If the sample data points
are multiplied by any invertible d�d matrix R, the scatter ratio J
(U) remains the same.

The proof is very trivial, as the determinants of R on the
numerator and the denominator canceled out.

Due to exactly the same reason, if the projection matrix U is
multiplied by any invertible r� r matrix V, J(U) does not change
either. Based on this observation, we can easily conclude the
following lemma:

Lemma 2. Solution Ambiguity: If Un is the solution of Eq. (2), then
VUn is also the solution of Eq. (2), for any invertible r� r matrix V.

Lemma 2. suggests that, it is safe to fix UTSwU¼ I in Eq. (2) without
any possibility to lose the optimal solution, because if UnTSw
Un¼ZZT 1, then there must be another Un'¼Un(ZT)�1 such that
Un'TSwUn'¼ I. Therefore Eq. (2) becomes:

JðUÞ ¼ max
UTSwU ¼ I

jUTSbU j ð3Þ

where the solution is obviously the Generalized Eigen-Value
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1 For mathematical rigor, the operator T should be referred to as the matrix
conjugate transpose operator, even this paper only discusses real numbers. Because
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Decomposition (GEVD) (Duda et al., 2000; Fukunaga, 1991) of
(Sw)�1Sb.

Thanks to Lemma 2, the solution of Eq. (2) becomes straight
forward; likewise, owing to Lemma 2, the solution of Eq. (2) can
fill up the entire subspace spanned by any Un, and thus making it
ubiquitous. For the sake of making the resulted DR projection not
so arbitrary, there are various streams of LDA research directions,
e.g. the orthogonal LDAs (Ye and Xiong, 2006; Nie et al., 2009)
impose the additional constraint UTU¼ I.

Actually, the determinant is a very ‘rough’ measure for
matrices. One particular fact accounting for such argument is that,
the determinant of any orthogonal matrix is þ1 or �1, regardless
of how the orthogonal transform is. It is not a nice property to
measure the DR projections used in statistical applications.

But the motivation of previous LDA literature to replace the
determinant ratio with the trace ratio is from another perspective:
it is argued that the trace ratio is a natural criterion in discriminant
analysis as it directly connects to the Euclidean distances between
training data points (Nie et al., 2009; Wang et al., 2007). Besides
the determinant ratio problem is equivalent to the ratio trace
problem, which is an inexact approximation of the trace ratio
problem (Fukunaga, 1991; Wang et al., 2007). Furthermore, by
comparing Eqs. (1) and (2), it is not difficult to understand that,
the determinant ratio is not the original Fisher's criterion (Fisher,
1936).

Using the determinant ratio is just one somewhat inappropri-
ate way to extend the original Fisher's LDA (Fisher, 1936). Another
inappropriate but more implicit extension is about how to general-
ize it for discriminating multiple classes, also known as Multiple
Discriminant Analysis (MDA) (Duda et al., 2000; Rao, 1948). About
a decade ago, the non-optimality of Eq. (2) with respect to
minimizing the classification error rate in the low-dimensional
subspace was realized (Loog et al., 2001), because outlier classes
dominate the eigenvalues decomposition, and the MDA tends to
over-weight the influence of classes that are already very well-
discriminated (see Fig. 1(a)). In this paper, we generalize the
original Fisher's LDA by projecting data points into multiple
subspaces, which is mathematically reasonable and fundamental,
as if only two classes are needed to be discriminated in each
subspace (see Fig. 1(b)). We adapt this idea into two existing LDA
methods, and find that multi-subspace DR can balance the
recognition rates of well-discriminated (outlier) classes and
poorly-classified (similar) classes.

In recent years, the LDA continues to be one of the most active
topic for a variety of research fields, such as pattern recognition,
computer vision, and artificial intelligence. Chen et al. (2013)
developed the Complete Large Margin Linear Discriminant Analy-
sis (CLMLDA) that constructs two mathematical programming
models by maximizing the minimum distance between each class
center and the total class center respectively in the null space of
within-class scatter matrix and its orthogonal complementary
space. Shao et al. (2011) proposed the Sparse Linear Discriminant
Analysis (SLDA) method, to handle the situation where the
number of dimension d is much larger than the training sample
size N, and the covariance matrix satisfies some sparsity condi-
tions. SLDA solves a specific type of LDA, and it still considers the
two-class classification problem, while our proposed methods are
designed to handle the classification problem with a large number
of class.

The rest of the manuscript is organized as follows: Section 2
formulates a single-label classification problem and presents the

proposed methods; Section 3 justifies and analyzes why our
methods work and their advantages; Experimental results are
discussed in Section 4 and finally, Section 5 draws concluding
remarks and points out some possible future work.

2. Problem formulation and our methods

In this section, the proposed definition of multi-subspace
scatter matrices are firstly presented, based on which, two popular
objective functions are adopted, leading to the multi-subspace
ratio-trace LDA (ms-LDA) and trace-ratio LDA (ms-LDA-tr) meth-
ods. Finally, we discuss how to combine the multiple subspaces by
a simple k-Nearest Neighour (kNN) classifier.

2.1. Definition of multi-subspace scatter matrices

Given a dataset of N samples, denote xiAℝd (1r irN) as its
feature vectors, and yi (1r irN) as its corresponding labels. As a
single-label classification problem with K classes, yiAZ, 1ryirK.
Let the input N samples be partitioned into K groups as πk

(1rkrK), where πk denotes the sample set of the k-th class with
|πk| data points.

In the traditional LDA, Sb and Sw are defined as:

Sb ¼
XK

k ¼ 1

jπk j ðmk�mÞðmk�mÞT ð4Þ

Sw ¼
XK

k ¼ 1

X

xi Aπk

ðxi�mkÞðxi�mkÞT ð5Þ

where mk is the mean (i.e. class centroid) of the k-th class, m is the
mean of all N data points (i.e. global centroid). Typically K«N. The
rank of Sb and Sw are at most K�1 and N�K respectively, making
the rank of (Sw)�1Sb at most K�1. That is the reason why at most
r¼K�1 projection directions can be obtained from the traditional
LDA. It seems that, computing Sb only with the class centroid loses
lots of useful information2 and makes the rank of Sb too low. So a
question arises naturally: why not use the individual data points
directly (as shown below)?

St ¼
XN

i ¼ 1

ðxi�mÞðxi�mÞT : ð6Þ

Here St turns out to be the covariance matrix of X. Interested
readers can verify that St¼SbþSw. Due to this reason, St is also
called the total scatter matrix. Replacing Sb with St in Eq. (2) leads
to:

JðUÞ ¼max
U

jUTStU j
jUTSwU j

; ð7Þ

where the solution, the GEVD of (Sw)�1St, has exactly the same
eigenvectors with that of (Sw)�1Sb, and all eigenvalues added by 1.
Therefore, the latter approach to construct Sb, namely the
individual-based Sb, brings some useless computation with results
identical to the traditional centroid-based Sb.

But such situation is not the same in their multi-subspace
versions. Following our basic class-adaptive idea, each class πk has
its own Skb and Skw for deriving its DR projection separately. The
individual-based Skb represents the sum of the distances between
all individual data points not belonging to the k-th class πk and the

(footnote continued)
UnSwUn

T is real-valued, symmetric and positive semi-definite, it can always be
decomposed into ZZT by the Cholesky decomposition (Duda et al., 2000).

2 Though it is believed theoretically that, no information is lost if all data points
are assumed to be normally distributed in each class and rZK�1 (Loog et al.,
2001).
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