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a b s t r a c t

Ball bearings are integral elements in most rotating manufacturing machineries. While detecting
defective bearing is relatively straightforward, discovering the source of defect requires advanced
signal processing techniques. This paper proposes an automatic bearing defect diagnosis method
based on Swarm Rapid Centroid Estimation (SRCE) and Hidden Markov Model (HMM). Using the
defect frequency signatures extracted with Wavelet Kurtogram and Cepstral Liftering, SRCEþHMM
achieved on average the sensitivity, specificity, and error rate of 98.02%, 96.03%, and 2.65%,
respectively, on the bearing fault vibration data provided by Case School of Engineering of the Case
Western Reserve University (CSE) which warrants further investigation.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fault detection and diagnosis (FDD) plays an important role
in process engineering (Venkatasubramanian et al., 2003). Early
detection of faults while a plant is still operating in a control-
lable region can help to avoid abnormal event progression,
minimize productivity loss, as well as improve stability of
manufacturing processes and the quality of end products
(Venkatasubramanian et al., 2003; Huang et al., 2009). Indus-
tries have generally acknowledged the importance of FDD
(Huang et al., 2009; Venkatasubramanian et al., 2003; Guo
et al., 2013; Wall et al., 2011). For example, petrochemical
industries estimated an annual loss of 20 billion dollars attrib-
uted to faults alone and have therefore put fault management as
critical priority (Venkatasubramanian et al., 2003). Semicon-
ductor and TFT-LCD factories employ periodic sampling to
monitor the stability of manufacturing processes (Huang et al.,
2009). Scientists develop statistical machine learning model for
automatic FDD in Heating Ventilation and Air Conditioning
(HVAC) systems (Wall et al., 2011). Considerable interest has
therefore been expressed in this field from both industrial

practitioners and academic researchers (Venkatasubramanian
et al., 2003; Yuwono et al., 2013a).

Bearings play a critical role especially in modern machineries,
power generators, motor vehicles, trains, industrial robots,
manufacturing machines, mining equipments, heavy vehicles,
construction cranes, and general purpose electro-mechanical
machines (Slocum, 2008). Newer inventions often require the
need for extreme precisions, greater capacities, and faster rota-
tions which makes maintaining healthy bearings increasingly
important. Poor operating environments, particularly moist or
contaminated areas and improper handling practices often give
rise to premature bearing failures which would shorten the
lifetime of the corresponding machine and ultimately impair
the robustness of product quality (Publications, 2007).

Bearings are most commonly associated as a supporting
element in rotating manufacturing machineries such as in
conveyer belts. This type of bearing is known as contact
bearing, as mechanical contact exists between the load and
the bearings. Contact bearings, an area of focus in this paper,
have developed extensively from their early use in bicycles to
construction cranes. More specifically, we will focus on deep-
groove ball (roller) bearings, also known as Conrad ball bear-
ings, with the primary goal of detecting faults in the following
compositions of the bearings: outer race, inner race and the
ball itself (Randall and Antoni, 2011).

A Conrad ball bearing is designed to support radial or bi-
directional axial loads. Faults commonly found in this type of
bearings include outer race, inner race and ball/rolling element
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faults (Randall and Antoni, 2011; Li and Wen, 2014). In order to
identify these faults, time and frequency domain analysis of
vibration signals along with clustering technique is employed.
Prior studies (Kulkarni and Sahasrabudhe, 2013; Fang and Zijie,
2007; Randall and Antoni, 2011) have revealed that the classi-
cal signal processing techniques such as the Fast Fourier
Transform (FFT) has succeeded in terms of analyzing frequen-
cies, but its discrete nature poses a significant challenge
in capturing the rather aperiodic and finite signals observed
in practice (Randall and Antoni, 2011). Another difficulty in
applying the FFT occurs with the existence of noise over signal.
This issue leads to the use of Wavelet Transform (WT) (Fang
and Zijie, 2007; Kulkarni and Sahasrabudhe, 2013; Sawalhi and
Randall, 2005) in extracting weaker signals due to its capability
to handle frequency transients.

The essential signal processing guidelines for the rolling be-
aring fault diagnosis are well established (Randall and Antoni,
2011; Fang and Zijie, 2007; Kulkarni and Sahasrabudhe, 2013;
Sawalhi and Randall, 2005; Randall and Hee, 1981). Fang and
Zijie (2007) observe a distinctive wavelet energy pattern in
various bearing faults. Kulkarni and Sahasrabudhe (2013) dis-
cover that fault frequency signatures can be isolated, denoised

and monitored using WT. Sawalhi and Randall (2005) show
that the resonance band can be estimated using Wavelet
Kurtogram. Randall points out that multiple faults may be well
discerned in the envelope cepstral domain given proper demo-
dulation (Randall and Hee, 1981).

In this paper we are interested in augmenting the available
signal processing technique with swarm intelligence and Marko-
vian probabilistic framework. This paper contributes a novel
automated method for detection and diagnosis of defects using
Swarm Rapid Centroid Estimation (SRCE) (Yuwono et al., 2013a,b,
2014) and Hidden Markov Model (HMM) (Guo et al., 2012, 2013;
Zoubin, 2001). The algorithm uses the (continuous) wavelet
kurtogram (Randall and Antoni, 2011; Lei et al., 2011; Valeriu
Vrabie and Pierre Granjon, 2003) and cepstral liftering (Randall
and Hee, 1981) as the feature extraction method. The proposed
method is tested against an openly available bearing fault dataset
published by the Case School of Engineering of the Case Western
Reserve University (CSE) (Case Western Reserve, 2014). The block
diagram of the method can be seen in Fig. 1.

The rest of the document is structured as follows. Section 2
gives a general overview of the vibrational behavior of a rolling
bearing system under fault. Section 3 gives a detailed explanation

Fig. 1. Block diagram of the proposed bearing defect diagnosis system.
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