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a b s t r a c t

The increasing complexity of product varieties and productions leads to higher mental workload in the
mixed-model assembly line (MMAL). Mental workload can improve product quality and guarantee the
efficiency simultaneously. However, little research has been done on balancing the production quality
and efficiency based on the effect of mental workload and complexity in the MMAL. This study aims to
propose a mathematical model to formulate the multi-objective MMAL problem and the genetic
algorithm is applied for problem solving due to the computational complexities. A numerical example
is used to demonstrate the effectiveness of the proposed approach. The results show that incorporating
the impact of mental workload on performance into account can make the rolled throughput yield (RTY)
and efficiency balance when designing the MMAL. Moreover, we also verify that improving the
experience of the operators can mitigate the impact of mental workload on the quality and efficiency.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

With the increase in market demand and fluctuation, the
modern manufacturing company is driven to enhance the cap-
ability to provide high quality products within a wide range of
product variety and short time-to-market delivery often experi-
enced in the automobile assembly industry. Based on the process
modular and just-in-time production mode, the mixed-model
assembly line (MMAL) has been recognized as a major enabler to
handle high product variety while simultaneously achieving qual-
ity in mass production and productivity (Rekiek et al., 2000). This
kind of MMAL mainly consists of use of human operators for
various assembly operations. However, diverse products and con-
figurations not only lead to negative impacts on complex manual
assembly processes, but also cause difficulties to the assembly
process for the operators. In addition, these impacts can possibly
lead to the occurrence of human errors and poor production
performance, thus affecting product quality and productivity
(Fisher and Ittner, 1999; MacDuffie et al., 1996).

The factors that affect operation errors are caused by choice
complexity and the operator’s mental state. On one hand, opera-
tors are confronted with increasing choice complexity during
assembly operations, such as part choice, tool choice, fixture

choice, and procedure choice. Choice complexity requires opera-
tors to use higher cognitive skills to finish the task successfully,
which makes mental the workload much higher than single
product assembly and therefore easily leads to more human errors.
On the other hand, assembling complex products needs a large
number of steps to be known, which further increases to the
mental workload that operators face in a certain period of
assembly time (Eklund, 1995). In U.S. manufacturing plants,
human errors caused by improper manual action on average
accounted for 40% of all errors, which were relevant to the level
of the operators’ skill (Vineyard et al., 1999). Based on the low
usage of cognitive support and assembly operations that were
performed by the operator’s own experience, Fast-Berglund et al.
(2013) indicated that choice complexity was positively correlated
with assembly errors. Li et al. (2011) analyzed the human factors of
each process in the piston production line and found that choice
complexity and mental workload of operators were the main
reasons for human operation errors. In addition, while the assem-
bly product requires lot of complicate variants to be performed
within a limited time span, the operators could become over-
loaded and incapable of performing all of the tasks, potentially
leading to incorrect installation, and other incorrect operations.
Furthermore, these incorrect operations may result in the dete-
rioration of product quality, an increase in reassembly time, and a
decrease in production rate (Benders and Morita, 2004).

The following studies have measured the complexity induced by
product variety and assessed the impact of complexity on the
performance in the MMAL. For example, Zhu et al. (2008) proposed
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information entropy to measure operator choice complexity and
mentioned that the human errors can be reduced by making the
module of many variants assembled in the latter station without
violating the process principle. To assess the complexity of MMAL at
an early design stage, Samy and EIMaraghy (2012) developed a
structural classification coding scheme to measure assembly sys-
tems complexity including operation machines, material handling
equipment and buffers equipment. Abad et al. (2011) proposed an
integrated framework to analyze the impact of workstation assem-
bly time, and the operators’ experience and complexity on the
assembly performance. In particular, the impacts of product quality
and production throughput were evaluated based on the part mix
ratio, operator’ experience, and mental deliberation time. Zeltzer
et al. (2013) also defined complexity at the workstation level and
proposed a complexity measure for mixed-model assembly work-
stations to investigate the impact of complexity on production
performance. Wang and Hu (2010) proposed a model of human
reliability based on Weibull distribution by analyzing the impact of
complexity on the reaction time and fatigue.

Level of mental workload plays a significant role in the modern
production assembly lines. Both low and excessive workload levels
result in poor operation performance of human operators (O’Hanlon,
1981; Young and Stanton, 2002). The optimal allocation of mental
workload of operators could reduce human errors, improve system
safety and increase quality and operator satisfaction (Moray, 1988).
The operation cycle time at each station affects the mental workload
and production performance. Liao (1998) presented the time pres-
sure model to predict the metal workload as the basis of adjusting
human workload. The tradeoff between operation speed and task
accuracy has been presented how the production performance is
influenced the available time for task operation (Plamondon and
Alimi, 1997; Reed, 1973; Schouten and Bekker, 1967). Therefore, while
the task time is abundant, the mental workload and human error are
both reduced resulting in high assembly quality. However, little
research has been done on bridging the gap between mental work-
load and production performance in the MMAL.

This paper aims to develop a mathematical model for solving
multi-objective optimization problem by considering product quality
and production efficiency in MMAL. In particular, a tradeoff between
quality and efficiency can be achieved by considering mental workload
and complexity during the operation of cycle time for each station.
After the model construction, the genetic algorithm (GA) is applied to
solve multi-objective optimization of mixed-model assembly line
problems through allocating the mental workload and operation of
cycle time for each station. Then a numerical case is conducted to
demonstrate the effectiveness of proposed method.

The paper is organized as follows. In Section 2, the model of
complexity for mixed-model assembly line is reviewed. Then a
prediction model was constructed to predict operators’ mental
workload to avoid potential human errors and experimental
results of mental workload. In Section 3, a multi-objective opti-
mization model is formulated to balance the tradeoff between
total product quality and production efficiency in consideration of
the effect of mental workload. In Section 4, a numerical case is
presented with numerical results from the proposed model for
solving product quality and efficiency in MMAL. Finally, the
conclusions and future work on this area are given in Section 5.

2. Mental workload in the mixed-model assembly line

2.1. Choice complexity model

The MMAL is consisted of a sequence of process stations based
on the product structure and assembly order. Each product, which
is represented by a product family architecture, has various

features (Ft) and each feature has several variants (Vst). As shown
in Fig. 1, one variant from its feature is selected for each process
station in system level. For example, variant V12 from feature F1 is
selected for station 1, and variant V33 from feature F3 is selected for
station 3. In particular, the possible combinations of customized
product are determined by the number of features and its variants.
Typically, the number of feature is equal to the number of the
process station.

Given one type of product mix is chosen in an MMAL. Then the
operators at each station need to identify the variants of the
product and determine the operation choices for the assembly
instruction among lots of alternatives in the station level. In order
to characterize the operation performance of making choice, Wang
et al. (2011) proposed the information entropy to measure opera-
tor choice complexity which is defined as the average uncertainty
in a random process. The choice complexity in the MMAL results
from the choice of the right part, fixture, tool, and assembly
procedure for each module variant. The part choice involves
selecting the right part according to the order of customized
product. According the partially completed assemblage, the fixture
choice involves selecting the right fixture to be mounted on the
selected part. The tool choice involves selecting the right tool
based on the choices of part and fixture. The procedure choice
involves selecting the right procedure by the prescribed assemble
procedures such as part orientation and angle.

Let Kj be the total number of choice alternatives at station j. The
choices needed in the kth activity of station j can be influenced by
the variety added at the current station, as well as those of the
upstream stations, which are called as “feed complexity” and
“transfer complexity”, respectively. Lkj is the number of state of the
kth activity at station j. A product process association matrix Δk

ij is
defined to express the relationship between product variants and
assembly process information. A vector pi ¼ pi1 pi2 ⋯ piMi

h i
represents the set of mix ratios of module variants at station i and
Mi is the number of variant at module i. In the vector
qk
ij ¼ q1 ⋯ qt ⋯ qLkj

h i
, t ¼ 1;2;…; Lkj is the probability of the

kth activity being in state t at station j caused by the variants added
at station i. The parameter αk

j is the weights related to the task
difficulty of the kth assembly activity at station j. The model of choice
complexity (Cf cj ) is defined as follows:

Cf cj ¼
XKj

k ¼ 1

αk
j

Xj
i ¼ 1

Hk
ijðqk

ijÞ ð1Þ

Subject to : Hk
ijðqk

ijÞ ¼ �
XLkj
t ¼ 1

qt log 2qt t ¼ 1;2;…; Lkj ð2Þ

qk
ij ¼ piΔ

k
ij j¼ 1;2;…;n; ir j; k¼ 1;2;…;Kj ð3Þ
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Fig. 1. Illustration of MMAL and the choice at one station (Zhu et al., 2008).
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