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a b s t r a c t

The present paper deals with the defect detection and diagnosis of induction motor, based on motor
current signature analysis in a quality control scenario. In order to develop a monitoring system and
improve the reliability of induction motors, Clarke–Concordia transformation and kernel density
estimation are employed to estimate the probability density function of data related to healthy and
faulty motors. Kullback–Leibler divergence identifies the dissimilarity between two probability distribu-
tions and it is used as an index for the automatic defects identification. Kernel density estimation is
improved by fast Gaussian transform. Since these techniques achieve a remarkable computational cost
reduction respect the standard kernel density estimation, the developed monitoring procedure became
applicable on line, as a Quality Control method for the end of production line test.

Several simulations and experimentations are carried out in order to verify the proposed methodol-
ogy effectiveness: broken rotor bars and connectors are simulated, while experimentations are carried
out on real motors at the end of production line. Results show that the proposed data-driven diagnosis
procedure is able to detect and diagnose different induction motor faults and defects, improving the
reliability of induction machines in quality control scenario.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In industry, Quality Control (QC) is a collection of methods that
are able to improve the quality and efficiency in production
processes and in many other industry aspects. In 1924, Walter
Shewhart designed the first control chart and gave a rationale for
its use in process monitoring and control (Stuart et al., 1995). The
main concept of QC is the “proactiveness”, in order to ensure the
product quality, monitoring processes and related signals to detect
when they “go out of control”. In the last years, manufacturing
industries are reversing many attentions and efforts in the
monitoring and control of manufacturing systems, introducing
QC methodologies in the production lines and concentrating many
investigations on the introduction of QC in their production lines
(Darmoul et al., 2013). One of the major problems, in which these
manufacturing industries are involved, is the presence of some
defective components in the lots of products they deal. Another
issue where QC concept and monitoring systems are under
investigation, regards the health diagnostics to improve system

safety, reliability and cost reduction for maintenance operations
(Wang et al., 2014; Rocchi et al., 2014).

A desirable QC solution for these manufacturing industries
should be minimally invasive, effective and with a low payback
period. In this paper, a solution with these characteristics is
proposed: a Fault Detection and Diagnosis (FDD) algorithm is
developed for defect detection and identification of electric motors.
The proposed algorithm can be used at the end of a production line
as a Quality Control solution to improve the reliability of induction
motors (Ferracuti et al., 2013b). When the electric motor reaches the
end of production line the FDD system acquires sensors measure-
ments and detects if the product is defective or not. Moreover, by
isolating and identifying the defective type, the FDD procedure helps
to estimate in which subprocess the defect is introduced and to
remove the defective products improving the quality of processes as
a proactive measures for the QC methodology. In this paper a FDD
signal-based approach is proposed instead of a model-based one.
One reason concerns the system implementation requirements: the
developed procedure employs only the current measurements. This
solution does not require to install sensors on the electric motor
because, in electric drives, these are available by inverters. Another
reason, to support the signal-based methods, is that the use of
models requires the knowledge of parameters; in manufacturing
industries the accurate knowledge of model parameters is not often
available (Ferracuti et al., 2011). Conversely, signal-based approaches
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require the use of a sample of faultless reference motors for tuning
the necessary parameters in a fast training stage.

In this context vibration analysis is well known and wide-
spread, as it is not destructive, reliable and it allows continuous
monitoring without stopping the machine. Several approaches
have been developed to recognize machine condition from vibra-
tion data (Ciandrini et al., 2010; Geramifard et al., 2013) and to
evaluate the severity of faults to assess the proper machine
condition (Jin et al., 2014a).

Motor Current Signature Analysis (MCSA) monitoring strategies
involve detection and identification of current signature patterns
that are indicative of normal and abnormal motor conditions.
However, the motor current is influenced by many factors such as
electric supply, static and dynamic load conditions, noise, motor
geometry, and fault conditions. Several papers deal with MCSA for
on line FDD based on supervised or unsupervised methods (Jin
et al., 2014b; Soualhi et al., 2013; Zhao et al., 2014).

Authors propose a data-driven FDD algorithm based on MCSA
in a QC scenario, tested on time series benchmark as well as in real
experimentations. Clarke–Concordia is used to transform stator
current measurements in 2-D dimensional patterns (Ferracuti
et al., 2013a). A probabilistic monitoring system, for defect detec-
tion and diagnosis, is developed by employs Kernel Density
Estimation (KDE) and Kullback–Leibler (K–L) divergence. KDE
allows to estimate the 2-D probability density function of Con-
cordia transformed patterns, these estimations are used as signa-
ture of the motor condition; K–L performs fault diagnosis by
divergence indexes (Giantomassi et al., 2015).

Due to KDE computational cost a fast Gaussian transform (FGT)
is employed to perform the numerical density estimation, such
that a remarkable computational cost reduction is obtained and a
near Fast Fourier Transform computational time is reached.

The proposed approach estimates the Probability Density Func-
tion (PDF) of Clarke–Concordia transformed data by KDE, which is a
non-parametric method useful to assess the data distribution (Botev
et al., 2010). The advantage of non-parametric approaches, respect to
parametric ones, is that they offer greater flexibility in modelling a
given dataset, and they are not affected by problems as stated in
Botev et al. (2010) (and reference therein). Kullback–Leibler diver-
gence is used as a distance measure between signatures computed
by KDE. K–L is an index that allows to identify the dissimilarity
between two determined probability distributions (that can be
multidimensional): one is related to the modelled signatures and
the other is related to the acquired data samples. By K–L divergence,
the classification of each motor condition is performed.

The paper is organized as follows. In Section 2Clarke–Concordia
transformation, KDE, FGT and K–L divergence are briefly intro-
duced respectively. In Section 3 the training and monitoring steps
of FDD procedure are discussed. The case study with the descrip-
tion of the experimental equipment and experiments is proposed
in Section 4. Results are then reported and discussed in Section 5,
while Section 6 concludes this paper with final remarks.

2. Recalled results

In this section authors present the algorithms used to develop
the fault and defect diagnosis procedure. It extracts patterns by
current signals using Clarke–Concordia transformation and KDE.
Then K–L divergence compares these patterns to extract the motor
health index.

2.1. Clarke–Concordia transformation

Due to the high correlation of three-phase induction motor
currents, a two-dimensional representation is needed. In this work

the Clarke–Concordia transformation (also known as the α�β
transformation) is employed, which is a power invariant transfor-
mation (Martins et al., 2007; Zidani et al., 2003). For healthy
motor, with three-phase without neutral connection, ideal condi-
tions for the motor and a balanced voltage supply, the stator
currents are given by Eq. (1), where ia, ib and ic denote the three
stator currents, Imax is the supply phase current maximum value, fs
is the supply frequency, ϕ is the phase angle and t is the time:

iaðtÞ ¼ Imax � sin ð2πf st�ϕÞ
ibðtÞ ¼ Imax � sin ð2πf st�2π=3�ϕÞ
icðtÞ ¼ Imax � sin ð2πf st�4π=3�ϕÞ:
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In ideal conditions, three-phase currents lead a circular pattern
centered on the origin of the coordinates. This is the reference
pattern and allows the detection of abnormal conditions measur-
ing the deviations of acquired patterns.

2.2. Kernel density estimation

Given N independent and identically distributed (i.i.d.) random
vectors X ¼ X1;…;XN½ �, where X i ¼ Xi1;…;Xid½ �, whose distribution
function FðxÞ ¼ P½Xrx� is absolutely continuous with unknown
PDF f ðxÞ. The estimated density at x is given by (Parzen, 1962):

f ðxÞ ¼ 1
N

XN
i ¼ 1

1
jHj dK

x�X i

jHj d
� �

; ð4Þ

A two-dimensional Gaussian kernel function is used (d¼2) and a
simplification, which follows from the restriction of kernel band-
width H ¼ h2I : h40

n o
, leads to the single bandwidth estimator;

therefore the estimated density f ðxÞ becomes (Wand and Jones,
1994a)

f ðxÞ ¼ 1
N

XN
i ¼ 1

1

2πh2
� �1=2e

�ð x�Xik k2Þ=2h2 ; ð5Þ

where xARd whose sizeM is the points number at which the PDF is
estimated. It is well known that the value of the bandwidth h and
the shape of the kernel function are of critical importance (Mugdadi
and Ahmad, 2004). In many computational-intelligence methods
that employ KDE, the problem to find the appropriate bandwidth h
is the issue (Comaniciu, 2003; Mugdadi and Ahmad, 2004; Sheather,
2004). In the present work the Asymptotic Mean Integrated Squared
Error (AMISE) with plug-in bandwidth selection procedure is used to
choose automatically the bandwidth h (Wand and Jones, 1994b). In
the proposed algorithm, KDE is used to model a specific pattern for
each motor condition, indeed the features of the current signals,
which are mapped by the Clarke–Concordia transformation in two
dimensional space, are specific signatures of the motor conditions.

2.3. Improved KDE by fast gaussian transform

In the classical formulation described in Section 2.2, the computa-
tional cost, required by KDE, is OðN �MÞ evaluations of the kernel
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