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a b s t r a c t

In a smart grid context, the increasing penetration of embedded generation units leads to a greater
complexity in the management of production units. In this paper, we focus on the impact of the
introduction of decentralized generation for the unit commitment (UC) problem. Unit commitment
problems consist in finding the optimal schedules and amounts of power to be generated by a set of
generating units in response to an electricity demand forecast. While this problem has received a
significant amount of attention, classical approaches assume that these problems are centralized and
deterministic. However, these two assumptions are not realistic in a smart grid context. Indeed, finding
the optimal schedules and amounts of power to be generated by multiple distributed generator units is
not trivial since it requires to deal with distributed computation, privacy, stochastic planning, etc. In this
paper, we focus on smart grid scenarios where the main source of complexity comes from the
proliferation of distributed generating units. In solving this issue, we consider distributed stochastic
unit commitment problems. We introduce a novel distributed gradient descent algorithm which allows
us to circumvent classical assumptions. This algorithm is evaluated through a set of experiments on real-
time power grid simulator.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The economic dispatch and unit commitment (UC) problem
consists in finding the optimal schedules and amounts of power to
be generated by a set of power generators (units) in response to an
electricity demand over a planning horizon (Aoki et al., 1989;
Borghetti et al., 2001; Guan et al., 2003). Earlier approaches for
solving UCs including branch-and-bound methods, dynamic pro-
gramming and Lagrangian relaxation techniques assume that units
are fully reliable and share all together their states, technical
specifications and schedules (Cohen and Yoshimura, 1983; Snyder
et al., 1987; Fisher, 2004). However, the increasing penetration of
embedded units in distributed networks together with the liberal-
ization of electricity markets make these assumptions less and less
realistic on both demand and supply sides (Kok et al., 2010;
Nikovski and Zhang, 2010; Ramchurn et al., 2012).

On the demand side, more and more customers supplement
the amount of power their own units generate by that of the
electrical utilities, which makes demand forecast inaccurate. On
the supply side, the amount of power generated by an electrical

utility influences the amount of power other electrical utilities
need to generate in order to meet the demand. Furthermore, the
liberalization of the electricity markets precludes electrical utilities
to share their private information with one another including:
schedules, generation capabilities, technical specifications, gen-
erator failure histories, blackouts, etc. As a consequence, centra-
lized and deterministic models are no more relevant to unit
commitment problems. Even more importantly, these limitations
highlight the impetus for models that can produce operational
schedules that are robust in face of both: supply and demand
uncertainties and privacy-preserving constraints.

Traditional responses to supply and demand uncertainties have
been to schedule enough reserve so as to face forecast inaccuracies
or generator failures. Typically, a safety margin of 3% in the
production is commonly used in power generation as a reliability
rule-of-thumb (Sheble and Fahd, 1994). This heuristic strategy
often results in the generation of amounts of power that signifi-
cantly exceed the expected demand, and thus the operational costs
of electrical utilities are overestimated. Clearly, as the penetration
of embedded units increases, such heuristics are likely to over-
estimate the operational costs and amounts of power units
generated.

A more promising approach assumes that the uncertainty
constraints are parts of unit commitment problems, which makes
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the latter stochastic. The goal, then, consists in finding schedule
strategies that minimize the expected operational costs while
preserving the ability to meet the expected demand, and ensuring
the robustness in face of supply and demand variability. Schedule
strategies implicitly provide safety margins by taking into account
all possible contingencies. Notice that the idea of using stochastic
unit commitment (SUC) problems in order to deal with supply and
demand uncertainties is not new. It can be traced back to Takriti
et al. (1996), who developed a stochastic programming model and
solution method based on Lagrangian relaxation techniques.

Since then, numerous authors have refined both the model and
the solution, exploiting Lagrangian heuristics (Nowak and Rmisch,
2000), security-based probabilistic models (Bouffard et al., 2005),
market-based mechanisms (Vytelingum et al., 2010) and Markov
decision processes (Nikovski and Zhang, 2010) to cite a few.
Unfortunately, the number of all possible contingencies in SUCs
may grow exponentially with the planning horizon, making exact
approaches intractable (Nikovski and Zhang, 2010). Instead of
considering the entire contingencies, Takriti et al. (1996) suggest
to plan only over a few scenarios, which significantly improves the
scalability of the solution method. But there is no free lunch, such
an approach often fails to address all future possible realizations
that are not part of the selected scenarios.

Though approaches to solving SUCs can handle uncertainty,
they all assume electrical utilities share with one another all their
private information. That is, there exists a centralized coordinator
agent that computes a centralized schedule strategy on behalf of
the entire set of electrical utilities. However, the liberalization of
electricity markets tends to enforce a system of competition where
electrical utilities compete to offer their electricity output to
retailers, making centralized approaches no longer reliable. In
such a setting, schedule strategies, the centralized coordinator
agent computes, are obsolete as they centralize private informa-
tion of all electrical utilities.

To tackle the privacy-preserving bottleneck, the past few years
have seen many distributed approaches to preserve private infor-
mation of electrical utilities involved in a distributed system. In
distributed approaches, each electrical utility is an autonomous
processing node, we will call an agent, which works together with
the other nodes in order to solve a unit commitment problem. The
agents collaborate to coordinate their resources and activities
while preserving their private information. Notable examples
include the work by Kim and Baldick (1997), who developed a
distributed algorithm that extends deterministic and centralized
Lagrangian relaxation methods; or that of Miller et al. (2012), who
introduced a message passing algorithm to UCs in the form of
distributed constraint optimization problems (Kumar et al., 2009;
Modi et al., 2005). Unfortunately, none of these distributed
approaches can handle the uncertainty in supply and demand.
So, it would seem like we are constrained to either face the
variability of supply and demand, or preserve private information
of electrical utilities. To the best of our knowledge, none of the
existing approaches can overcome both: supply and demand
uncertainties; and privacy-preserving constraints.

In this paper, we introduce an algorithmic framework that
extends both stochastic and distributed approaches to UCs in order
to ensure that electrical utilities do not explicitly communicate
their private information to their competitors during the planning
phase. In particular, we recast distributed stochastic unit commit-
ment (DSUC) problems into linearly constrained quadratic pro-
grams (LCQP). In this form, the primary contribution of this work
is to extend existing distributed algorithms for solving uncon-
strained quadratic programs to LCQP and thus DSUC. This is
achieved by means of communication protocols that allow elec-
trical utilities to choose which part of their private information to
share with one another in order to collectively find an optimal or

near-optimal schedule strategy. The resulting algorithm, namely
protocol based distributed projected gradient-descent optimization
(P-DPGO), is guaranteed to terminate after a finite number of
iterations with a near-optimal solution.

We demonstrate the performance of the P-DPGO algorithm on
an IEEE 14 nodes network, which consists of several virtual power
plants with controllable generator units. The principal source of
uncertainty in such a setting is the unpredictable break-downs
generator units can experience, which make the supply uncertain.
Experiments over different stochastic scenarios show that P-DPGO
produces efficient schedule strategies in term of costs. This is
expected given that our approach exploits three advantages: first,
it preserves private information of electrical utilities; next, it takes
into account long term decision effects; and finally, it can handle
uncertainty in supply and demand.

The remainder of this paper is organized as follows. First,
we provide some motivating scenarios that illustrate the key
features in DSUCs (Section 2). Next, Section 3 describes different
models of UCs, and Section 4 discusses distributed algorithms for
solving unconstrained quadratic programs we build upon. Then, in
Section 5, we describe P-DPGO, which combines existing distrib-
uted algorithms to communication protocols in order to ensure
that local information electrical utilities do not want to share
remain private. Finally, we present an empirical evaluation of this
algorithm on a real experimental platform.

2. Motivating scenarios

In the following, we distinguish between three scenarios that
illustrate the characteristics of unit commitment problems we
target. The primary scenario involves no competition at all and no
uncertainty, the second augments the former by taking into
account uncertainty and the last scenario complements the second
one assuming a competitive setting.

Scenario 1. In this first scenario, we consider a smart grid that
consists of two controllable units, e.g., diesel power generators,
each of which is owned by a single electrical utility. This electrical
utility needs to find the least-cost dispatch of available generation
resources to meet the electrical load over 24 h. In this world, each
unit can generate power profiles that range from 10% to 95% of its
nominal generation capacity. In addition, each unit incurs opera-
tions and maintenance costs that increase quadratically with the
amount of power it generates. Furthermore, each unit is subject to
a number of complex and private technical constraints, e.g., the
maximum rate of ramping up or down and the minimum period
the unit is up and or down.

Such a non-competitive and deterministic scenario is amenable
to centralized branch-and-bound methods, dynamic programming
and Lagrangian relaxation techniques (Cohen and Yoshimura,
1983; Snyder et al., 1987; Fisher, 2004). However, there are various
sources of uncertainty in real-world unit commitment problems.
Examples, such as unpredictable failures in the transmission net-
work or the introduction of uncontrollable units, make consumers
at different nodes in the distribution network to experience cuts in
the power supplied. As a consequence, the other distribution
networks compete to offer their electricity output in order to
meet the demand of these consumers. A stochastic scenario, which
complements that in Scenario 1, follows.

Scenario 2. In this second scenario, each unit can experience
unpredictable breakdowns, which result in cuts in the power supplied.
More precisely, at the end of each time step, each unit can sense some
information, which in this case corresponds to whether or not a
breakdown occurs.
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