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a b s t r a c t

In this paper, we present a SLAM approach that builds global occupancy-grid maps using laser range
data. The method consists of two basic algorithms: a process of finding correspondences and alignments
between local sub-maps and a high level optimization algorithm that aligns and builds a global map. The
main novelty of the paper is the use of a visual description of the local sub-maps. We propose to use
visual features to easy the search of correspondences between different sub-maps. The association of
features between different maps gives us transformations between the different key maps. Afterwards, a
graph is built using the reference frames as the vertexes and the transformation between key-maps are
the edges. Stochastic Gradient Descent (SGD) is next employed to compute a global map. The results
show the validity of the proposed algorithm in terms of precision and robustness.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Mobile robots possess the capability of moving around the
environment while carrying out a task. These machines are becoming
more and more frequent in industrial, military and surveillance
applications. Thus, research in this area focuses on the achievement
of a true autonomous robot capable of performing high-level tasks
without supervision. Navigating inside a given scenario usually req-
uires a precise map. In consequence, the problem of Simultaneous
Localization and Mapping (SLAM) receives significant attention. Sol-
ving the SLAM problem implies the skill of incrementally building the
map of the environment while, simultaneously, using this map to
compute the robot's absolute location. This is considered as a hard
problem, since any error included in the estimation of the location and
orientation of the robot induces an error in the estimation of the map,
and inversely an error in the map will produce an error when com-
puting the localization of the robot with respect to it. SLAM app-
roaches differ mainly in the kind of sensors used to extract informa-
tion from the environment, such as laser range finders (e.g. Grisetti et
al., 2007a; Hähnel et al., 2003; Biber et al., 2004; Eustice et al., 2005;
Triebel and Burgard, 2005). Other researchers have used cameras (Gil
et al., 2010b,c), omnidirectional vision sensors (Valiente et al., 2014)
and others to obtain usable information to build the map. SLAM
algorithms typically differ also in the underlying algorithm used to
estimate the map. Classic algorithms are based on the Extended
Kalman Filter (EKF) (Dissanayake et al., 2001), a particle Filter

approximation (Montemerlo et al., 2002) or Stochastic Gradient
Descent (Grisetti et al., 2007b).

A common pitfall in SLAM algorithms is scalability. In general,
SLAM algorithms should be capable of computing extensive areas,
either using a single or multiple robots. For example, assume that
an algorithm is capable of estimating a 1�1 m occupancy-grid
map and expends 1 s in this task. As the area and the quantity of
information from the environment grow, the time needed to
compute the map generally increases in an exponential manner.
Typically, EKF-based approaches to SLAM (Dissanayake et al.,
2001) suffer from poor scalability and have a limited applicability
to large maps, since their update stage has a quadratic dependence
with the number of features in the map. Also, particle filter based
SLAM algorithms have problems when used with multiple robots
(Gil et al., 2010c), since they depend on sampling the robots' pose.
The number of particles required grows as the number of dimen-
sions increases. Currently, researchers are focusing their efforts on
Graph-based SLAM algorithms, which present better scalability
performance and are a more compact approach to SLAM (Grisetti
et al., 2009).

An important concept in any SLAM algorithm is that of loop
closing. In general, the mobile robot must be capable of establishing
relations between the different areas explored until the moment, for
example, whether the area that the robot is traversing now has been
visited before or not. Graph-SLAM techniques consider the computa-
tion of the map based on a set of restrictions. These restrictions
include odometry readings that introduce noisy distances between
the nodes of the graph and relations between nodes obtained from
observations, e.g. the distance and orientation between node i and
node j in the graph. When occupancy-grid maps are used, a typical
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observation between node i and node j can be derived by aligning the
local occupancy maps associated with both nodes. Aligning two local
sub-maps is equivalent to finding a translation and rotation between
both maps.

Several authors have applied graph-SLAM techniques in com-
bination with computer vision techniques as a way to find
correspondences between different observations of the environ-
ment. Later, a graph of views of the environment can be created
from the correspondences (Konolige et al., 2009; Cummins and
Newman, 2008). In these approaches, each node in the graph
corresponds to an image acquired by the robot at different poses in
space. However, little research has been carried out so far in the
usage of graph-based approaches with laser data. In this paper we
concentrate on this problem and present several new ideas and
techniques. Our approach exploits the concept of the manifold
representation (Howard et al., 2006). A manifold consists of a set
of patches from a two dimensional space embedded in a higher
dimensional space. The use of this representation allows an easy
way of retro-traversing the space and it also permits to delay
indefinitely the closure of loops while having always a consistent
map for navigation.

This paper presents an occupancy grid-based Simultaneous Loca-
lization and Mapping (SLAM) algorithm. The approach shows nice
scalability properties and can be applied to the mapping of large
areas. The main contribution of this paper consists in a novel
technique that uses local occupancy sub-maps in combination with
visual features to find robust correspondences between different
locations in the map. In particular, we propose to use SURF features
(Bay et al., 2008) applied to the distance transform (Felzenszwalb and
Huttenlocher, 2012) of the local maps. SURF features have been used
extensively to extract significant point from planar (Gil et al., 2010a)
or panoramic images (Valiente et al., 2014). However, they have never
been used on occupancy grid images. In addition, in this study we
propose the use of the distance transform prior to the extraction of
significant points. We have observed that this image transformation
allows us to obtain better results. The distance transform of an image
gives to each pixel a value that corresponds with the distance to the
closest obstacle in the map. In our representation, obstacles are
represented in the occupancy grid as cells that possess a zero value.
As a result, after applying the distance transform, we obtain a figure
that emphasizes the structure of the environment. As the results will
show, SURF features extracted from these distance-transformed maps
are very robust. In addition, the number of features is significantly
lower than applying the SURF feature detector directly to the
occupancy grid, since the distance transform tends to remove
unnecessary details and emphasizes the structure of the local areas.

In our scheme we use the manifold representation proposed pre-
viously (Howard et al., 2006) but extending and developing it with a
different local map representation and a feature based alignment of
the sub-maps.

Finally, the SLAM approach is completed by building a map
using the graph created from the observations. Each observation is
computed as the alignment of two different local occupancy grid
maps. Finally, this graph is optimized using stochastic gradient
descent (SGD) (Grisetti et al., 2009) and all the occupancy grids are
fused together to create a global occupancy grid map.

The rest of the paper is organized as follows. First, Section 2
presents a global view of our proposed architecture. Next, Section 3
defines the different local occupancy-grid maps used in the approach.
Following, Section 4 details the graph-SLAM approach, explaining the
description, alignment and graph optimization of the local maps, as
well as the loop closure and map fusion procedures. Then, Section 5
presents several experiments that were carried out to test our
approach. Finally, Section 6 states our conclusions and introduces
our future work.

2. Architecture

Fig. 1 shows a global layout of the architecture we have imple-
mented using the ROS framework (Quigley et al., 2009). The archi-
tecture was designed in order to allow a robot team to explore and
create a map of an unknown environment. The different processes
that cooperate to solve the problem are indicated with boxes. Note
that some processes include high-level navigation tasks that are
solved with the map built until that moment. In this paper, we focus
on the SLAM part of this architecture consisting of the local maps
generation in the low level planner as well as the graph-SLAM that is
the main contribution of this paper. The design of the other modules
of this architecture, mainly the high level planner and reactive
navigation control, follows the hybrid exploration model detailed in
Juliá et al. (2010). Refer to Juliá et al. (2010) for a full description of
these modules.

In Fig. 1 the gray dashed box is used here to indicate that the
simple local mapper, the local navigation mapper and the reactive
navigation control processes are integrated in one single node for
low level planning. These three processes work together at a fast
rate since they are implementing a real-time reactive control.

As it can be seen, the low level planner takes the scans of the laser
and the localization from a scan matcher (Censi, 2008) and builds
local maps that are used for SLAM and navigation. It includes a reactive
navigation control module that generates a set of speed commands in
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Fig. 1. Architecture of the mapping system.
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