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Multivariate time series has attracted increasing attention due to its rich dynamic information of the
underlying systems. This paper presents an improved extreme learning machine for online sequential
prediction of multivariate time series. The multivariate time series is first phase-space reconstructed to
form the input and output samples. Extreme learning machine, which has simple structure and good
performance, is used as prediction model. On the basis of the specific network function of extreme
learning machine, an improved Levenberg-Marquardt algorithm, in which Hessian matrix and gradient
vector are calculated iteratively, is developed to implement online sequential prediction. Finally,
simulation results of artificial and real-world multivariate time series are provided to substantiate the
effectiveness of the proposed method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Time series prediction, which is bounded in both scientific
researches and engineering applications, has attracted increasing
attention for years (De Gooijer and Hyndman, 2006). Due to the
complexity of underlying systems, nonlinear or chaotic time series
prediction has aroused more and more concerns (Zhao et al., 2009; Li
et al, 2012). Furthermore, the time series observed from complex
systems generally compromises multiple variables, and there is more
dynamic information of the underlying dynamic system contained in
multivariate time series than in univariate time series (Cao et al.,
1998; Chakraborty et al., 1992). As a consequence, multivariate time
series prediction has become an increasingly important research
direction (Popescu, 2011; von Biinau et al., 2009).

In existing literature, support vector machines (Sapankevych and
Sankar, 2009), neural networks (Shi and Han, 2007; Pino et al., 2008),
and other machine learning methods (Bai and Li, 2012) have been
researched to predict time series. Moreover, according to Takens'
Embedding Theorem (Takens, 1981), the time series can be recon-
structed to the phase-space by a time delayed coordinate, which can
translate time correlation to spatial correlation in phase-space.
Because of the universal approximation capability and distributed
computing characteristic, neural networks have become one of the
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most influential prediction tools (Jaeger and Haas, 2004; Zemouri
et al,, 2003; Niska et al., 2004).

But the traditional gradient-based learning algorithms of neural
networks converge slowly and are easy to be trapped in local
optimums, which constrain the prediction performance of neural
networks. To deal with the shortcomings of traditional neural net-
works, extreme learning machine (ELM) has been developed (Huang et
al, 2006b). Compared with other neural networks with random
weights (Huang, 2014), the input weights and the bias of hidden nodes
of ELM are generated randomly before learning, and an optimal output
weights can be obtained by a one-shot algorithm. Owing to its simple
structure, fast learning speed and good generalization performance,
ELM has been successfully applied to function approximation (Rong et
al,, 2009), time series prediction (Nizar et al, 2008; Lian et al., 2013),
pattern classification (Man et al., 2012; Miche et al., 2010; Luo and
Zhang, 2014) and other fields (Soria-Olivas et al,, 2011; Ye et al., 2013).
Although ELM has greatly improved the neural network training speed
and accuracy, there are still some shortcomings (Huang et al.,, 2011).

The ridge regression algorithm is introduced to improve the
stability and generalization performance of ELM (Deng et al., 2009;
Huang et al., 2012), and second order Newton optimization algorithm
is applied in ELM training (Balasundaram, 2013). Besides, online
learning variants of ELM are proposed to satisfy real-time and online
learning requirements. Online sequential ELM (OS-ELM) (Liang et al.,
2006) provides a sequential implementation of the least squares
solution of ELM. Successively, ensemble of online sequential extreme
learning machine (EOS-ELM) (Lan et al, 2009), online sequential
extreme learning machine with forgetting mechanism (FOS-ELM)
(Zhao et al., 2012), regularized online sequential learning algorithm
(ReOS-ELM) (Huynh and Won, 2011), low complexity adaptive
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forgetting factor OS-ELM (LAFF-COS-ELM) (Lim et al, 2013), online
sequential ELM-TV (Ye et al, 2013) and online sequential extreme
learning machine with kernels (OS-ELMK) (Wang and Han, 2014a)
have been proposed and their superior performances have been
testified.

Considering the advantages of ELM, some variants of ELM have
been used to predict multivariate time series. In Wang and Han
(2012), a model selection algorithm is applied to determine the
optimal structure of ELM, and the resulting model is used to
predict multivariate chaotic time series. And in Wang and Han
(2014), different kernels are used together to map the multivariate
time series and the resulting multiple kernel extreme learning
machine (MKELM) is proposed. However, these two methods are
all included in the batch or offline prediction framework. In order
to solve the problem of online sequential prediction of multi-
variate time series, an improved ELM prediction model is pre-
sented in this paper. The multivariate time series is first
reconstructed to the phase-space where ELM is used to approx-
imate the input-output mapping. An improved Levenberg—Mar-
quardt (LM) algorithm is developed to optimize the output
weights of the ELM prediction model online sequentially. When
new samples are observed, the Hessian matrix and the gradient
vector are updated iteratively, and the corresponding output
weights are tuned immediately. As a result, the ELM can learn
the latest observed time series in real-time. The paper is organized
as follows. In the second section, the problem definitions are
given. Some preliminary work is briefly reviewed in the third
section. Next, an improved online sequential LM algorithm is
presented, and it is incorporated in the ELM prediction model.
Finally, three experiments of artificial and real-world multivariate
time series are conducted to illustrate the effectiveness of the
proposed method compared with other existing approaches.

2. Problem definitions

The variables and notations are defined in Table 1.

3. Preliminaries

In this section, we will give a brief review of multivariate time
series reconstruction and ELM model.

3.1. Multivariate time series reconstruction

Time series is a sequence of value points, measured at successive
times spaced typically at uniform time intervals. Time series predic-
tion is the use of a model to predict future value based on previously
observed values. In order to establish a prediction model for the time
series data generated from a nonlinear dynamic system, a time
delayed phase-space reconstruction is used as preprocessing, gener-
ally. According to Takens' Embedding Theorem (Takens, 1981), as
enough delayed coordinates are used, scalar time series is sufficient to
reconstruct the dynamic of the underlying systems. However, it is not
certain whether a given scalar time series is sufficient to reconstruct
the dynamic or not (Popescu, 2011). Additionally, multivariate time
series contains more dynamic information than scalar time series,
using available multivariate time series would improve the prediction
performance (Chakraborty et al., 1992).

Considering M dimensional time series: X1, X3, ..., Xy, Where
Xi= (X14.X24, ....Xm), i=1,2,...,N. As in the case of scalar time
series (wWhere M=1), a time delayed reconstruction can be made as
follows:
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where 7;, d;, i=1,...,M, are the time delays and the embedding
dimensions, respectively. As Takens' Embedding Theorem (Takens,
1981), if d or each d; is large enough, there exists generally a
function F : R9—» %9 (d =M, di) such that

Vi1 =F(Vy) (2)
The equivalent form of (2) can be written as

X1n+1 =F1(Vyn)
Xon1=F2(Vy)

Xmn+1=Fu(Vn) (3)

The remaining problems are how to choose the time delays z; and
embedding dimensions d;,i=1,...,M, so that (2) or (3) holds.
There are several methods for choosing the time delay for scalar
time series, such as mutual information and autocorrelation (Sun
et al., 2014).

3.2. Extreme learning machine prediction model

ELM has a simple three-layer structure: input layer, output
layer, and hidden layer which contains a large number of non-
linear processing nodes. The weights connecting the input layer to
the hidden layer, and the bias values within the hidden layer of
ELM are randomly generated and maintained throughout the
learning process, and only the output weights need to be learned.
Generally, ELM has interpolation capability and universal approx-
imation capability (Huang et al., 2006a), so ELM can be a promis-
ing time series prediction tool.

Mathematically, ELM can be formulated as a function as
follows:

L L
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where x; € R" is the input vector, Wi, e R" is the weight vector
connecting the input nodes to the ith hidden node, Wi - X;
denotes the inner product of Wj,; and x;, b; € %R is the bias of the
ith hidden node, g(-) is the sigmoid activation function , w; e R is
the output weight connecting the ith hidden node to the out-
put node, y; € R is the output of ELM, L is the number of hidden
nodes, and N is the number of training samples. In the ELM
learning framework, Wi, and b; are randomly chosen before-
hand.

The function (4) can be further expressed by the following
matrix-vector form:

Aw=Y. (5)
where

g(Win), by, X1) E(Winwy, by, x1)

A=

>

E(Win1y, b1, xn) E(Winy, b, xn)
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Y =[y,....yn]", and w=[wy,w,,...,w;]". Matrix A is called the
hidden layer output matrix of ELM in Huang et al. (2011); the ith
column of A is the ith hidden node's output vector with respect to
inputs X1, X;, ..., Xy and the jth row of A, denoted as @; is the output
vector of the hidden layer with respect to input x;.

If the ELM model with L hidden nodes can learn these N
training samples with no residuals, there exists w, so that

L
Zwlg(wln(l)x]+bl):t]’ ]:1,,N (6)

i=1
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