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a b s t r a c t

This paper proposes new techniques to calculate the dynamic gains of nonlinear systems represented by
fuzzy basis function network (FBFN) models. The dynamic gain of an FBFN can be approximated by
finding the maximum of norm values of the locally linearized systems or by solving a non-smooth
optimal control problem. From the proposed gain calculation techniques, a novel adaptive multilevel
fuzzy controller (AMLFC) with a maximum output scaling factor is presented. To guarantee the system
stability, a stability condition is derived, which only requires that the output scaling factor of the AMLFC
be bounded. Therefore, this paper provides a systematic and simple design practice for controlling
nonlinear systems by using an AMLFC. The AMLFC is simulated in a tower crane control system.
Simulation results show that AMLFC is not only robust but also provides improved transient
performances compared with the robust adaptive fuzzy controller.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy controllers are constructed based on heuristic rules and “expert knowledge” derived from physical systems. Early fuzzy control
papers did not provide mathematical stability analysis or proofs of the control systems (Sala, 2013). However, the stability of a fuzzy
control system is very important in the controller design process to guarantee desired performance and safety in the plant operations.

The applications of the small gain theorem (Jiang et al., 2010; Yang, 2005) and the passivity theory (Xu and Shin, 2005) in fuzzy control
systems show great advantages compared to other stability methods. These stability theories do not require an exact mathematical
representation of the plant and, therefore, they can be applied to nonlinear systems with unknown mathematical models. With the small
gain theorem, Chen and Ying (1993) demonstrated how the parameters of a proportional-integral (PI) fuzzy controller could be chosen to
ensure the input-output stability of a nonlinear system. However, the stability criteria developed are only limited to a certain type of fuzzy
controllers with two input and three output membership functions. Since Chen and Ying (1993) divided the stability problem according to
the locations of the error and the time rate of change of the error with respect to zero, the complexity of the problemwould exponentially
increase if the number of input and output membership functions increases. In the current work, the stability analysis is conducted based
on the location of the error and the time rate of change of the error with respect to the activated membership functions. The results,
therefore, can be applied to fuzzy controllers with any number of input and output membership-functions.

Since mathematical models for nonlinear systems cannot always be easily obtained, fuzzy basis function network (FBFN) models were
adopted in many applications (Chiang et al., 2012; Lee and Shin, 2001; Leng et al., 2005) to represent the relationship between the inputs
and outputs of the systems. With a set of input and output data, Wang and Mendel (1992) showed that any nonlinear system can be
approximated by an FBFN model. However, controllers implemented with FBFN models are still limited, owing to a lack of stability
analysis. Due to the nonlinearity characteristics of the FBFN, the small gain theorem is the most appropriate approach to finding the
stability region in this case. Therefore, obtaining the dynamic gain from an FBFN model is the first step towards achieving the stability
condition for nonlinear fuzzy control systems.
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In many applications where heuristic information for designing a fuzzy controller is not sufficient, the parameters of a fuzzy controller
can be computed offline by using input and output data (Chen et al., 2009; Lin and Xu, 2006; Mingzhi et al., 2009). Ying (1994) introduced
a method for obtaining the parameters of a PI fuzzy controller by tuning a linear PI controller. However, the global stability of the control
system could not be guaranteed, since Ying's method only showed local stability around the equilibrium points, nor could it determine the
size of the region of local stability. When there are disturbances and time-varying parameters, online adaptation of control parameters
based on data gathered in real-time would be more effective. Li and Tong (2003) proposed a hybrid control system, which consists of a
state observer, an adaptive fuzzy mechanism, an H1 control and a sliding mode control. Boubakir et al. (2011) used a different approach to
tune the parameters of a proportional-integral-derivative (PID) controller for multi-input multi-output (MIMO) dynamic systems by
minimizing the error between an ideal controller and the PID controller. However, the controllers developed by both Li and Tong (2003)
and Boubakir et al. (2011) can only be applied to a certain class of nonlinear dynamic systems where the input is represented by a linear
term in the system's mathematical model. Pellegrinetti and Bentsman (1996) offer an example of nonlinear systems that cannot be
represented in this form. Furthermore, stability conditions for the controllers presented in these papers must be calculated based on the
upper bounds of the model functions. These values are difficult to obtain in many cases where the system models are unknown. In the
current work, since an FBFN is used as a representation of nonlinear systems, the stability condition depends only on the dynamic gain
that can be computed directly from the FBFN's parameters.

Different studies have been conducted to improve the performance of fuzzy controllers. Haj-Ali and Ying (2004) and Arya (2007) have
analyzed the structures of PI fuzzy controllers and found the effects of nonlinear and asymmetrical input sets on the performance of the
controllers. Chen and Ying (1993) and Haj-Ali and Ying (2004) demonstrated that fuzzy PI and PID controllers could be treated as
nonlinear PI and PID controllers. Mudi and Pal (1999) presented a method to tune the output-scaling factors of fuzzy controllers by using
the error and the time rate of change of the error signals. However, this method is based only on an intuitive analysis of the desired
performances to keep the system stable; no mathematical stability analysis was provided in their work. In Woo et al. (2000), a PID fuzzy
controller was proposed with self-tuning algorithms for both input and output scaling factors, but lacked a systematic stability analysis.
The multilevel fuzzy controller (MLFC) system was proposed by Xu and Shin (2005), wherein the controller has an adaptive mechanism
designed to tune the output membership functions based on the system outputs. Although the MLFC has been successfully utilized in
different applications (Davis et al., 2011; Ngo and Shin, 2012), the controller still has some limits when dealing with time-variant systems
such as sectorial restrictions on membership functions.

The current work proposes a novel method to estimate the dynamic gain of a nonlinear system and discusses the design process for a
newMLFC with an adaptive mechanism for the output scaling factor. The design can improve the transient performance of control systems
while eliminating the need for initial parameter tuning. The stability analysis is conducted based on the small gain theorem and uses the
dynamic gain of the nonlinear system to provide the maximum bound of the MLFC's output scaling factor for system stability.

2. Dynamic gain estimation of nonlinear dynamic systems modeled by FBFNs

The stability analysis of a nonlinear fuzzy control system based on the small gain theorem requires an estimation of the dynamic gain of
the plant. Two methods are provided in this section to calculate the gain of an FBFN system. In the first method, the dynamic gain can be
approximated by finding the maximum of the norm values of the locally linearized systems. This method provides an effective technique
for FBFN models with a large number of fuzzy rules, since the estimation can be done based on experimental data. The second method
provides an analytical computation technique of the dynamic gain based on a non-smooth optimal control problem. To simplify
mathematical analysis, only nonlinear systems with single input and single output (SISO) are considered in this paper. However, the
technique can be easily expanded to MIMO systems by applying the same procedure for each individual input and output pair.

2.1. Local linear model of a nonlinear systems represented by FBFNs

This subsection provides a method for obtaining the local linear model of a nonlinear system from its FBFN model. For a SISO nonlinear
system, an FBFN model can be constructed from the input and output data through a set ofl fuzzy rules, where the ith rule Ri is described
as following:

Ri : If uðk�1Þ ¼ Ai
1 AND uðk�2Þ ¼ Ai

2 AND …AND uðk�mÞ ¼ Ai
m AND

yðk�1Þ ¼ Bi
1 AND yðk�2Þ ¼ Bi

2 ⋯AND yðk�nÞ ¼ Bi
n

then yðkÞ ¼ bi
ð1Þ

where u(k) is the input and y(k) denotes the output of the nonlinear system at time instance k, m and n represent the system orders of the
input and the output,

A1…Am and B1…Bn are fuzzy membership sets, and
b represents a singleton function of the output.
Assume that the output of the FBFN model at initial condition is zero, by using singleton fuzzification, product inference and centroid

defuzzification methods, the FBFN model can be represented by the following state space equations:

xðkÞ ¼ fðxðk�1Þ;uðk�1ÞÞ

yðkÞ ¼ cTxðkÞ ð2Þ

where

xðkÞ ¼ yðkÞ;…yðk�nþ1Þ� �T
; uðkÞ ¼ uðkÞ;…;uðk�mþ1Þ� �T

; xð0Þ ¼ 0; 0; :::;0½ �T ; ð3Þ
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