
A novel algorithm of extended neural networks for
image recognition$

Kankan Dai, Jianwei Zhao, Feilong Cao n

Department of Applied Mathematics, College of Sciences, China Jiliang University, Hangzhou 310018, Zhejiang Province, PR China

a r t i c l e i n f o

Article history:
Received 31 October 2014
Received in revised form
17 March 2015
Accepted 17 March 2015
Available online 10 April 2015

Keywords:
Feedforward neural networks
Matrix data
BP algorithm
Image recognition

a b s t r a c t

As a class of important classifiers, feedforward neural networks (FNNs) have been used considerably in the
study of pattern recognition. Since the inputs to FNNs are usually vectors, and many data are usually
presented in the form of matrices, the matrices have to be decomposed into vectors before FNNs are
employed. A drawback to this approach is that important information regarding correlations of elements
within the original matrices are lost. Unlike traditional vector input based FNNs, a new algorithm of
extended FNN with matrix inputs, called two-dimensional back-propagation (2D-BP), is proposed in this
paper to classify matrix data directly, which utilizes the technique of incremental gradient descent to fully
train the extended FNNs. These kinds of FNNs help to maintain the matrix structure of the 2D input
features, which helps with image recognition. Promising experimental results of handwritten digits and
face-image classification are provided to demonstrate the effectiveness of the proposed method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

It is well-known that image recognition is a hot topic in the fields
of machine learning and computer vision. In such recognition systems,
many data images, such as handwritten digital images, face images,
and palm images, are usually presented in the form of matrices.
Clearly, determining how to classify these kinds of data is an important
topic in pattern recognition.

Traditional image recognition system contains three steps: image
pre-processing, feature extraction, and classification. At present, there
are various methods for feature extraction, such as principal compo-
nent analysis (PCA) (Jolliffe, 2002), independent component analysis
(ICA) (Hyvärinen and Oja, 2000), and several popular applied classi-
fiers, including K-nearest neighbourhoods (KNNs) (Shakhnarovich et
al., 2008), support vector machines (SVMs) (Vapnik, 2000), feedfor-
ward neural networks (FNNs) (Hornik et al., 1989), and so on.

Nevertheless, these methods are usually based on vector inputs.
Thus, when they are used in image processing, we first have to
expand the matrix inputs into vector form. These types of transfor-
mation often lead to the loss of important information regarding the
original matrix data, and thus affect the recognition process. On the
other hand, expanding matrix inputs into vectors usually causes high
dimensionality and increases the complexity of the used models.

To solve this problem, two-dimensional (2D) methods that
directly operate on matrix data are proposed, for example, the
two-dimensional principal component analysis (2DPCA) (Yang
et al., 2004; Zhang and Zhou, 2005) and two-dimensional linear
discriminant analysis (2DLDA) (Li and Yuan, 2005; Sanguansat
et al., 2006; Yang et al., 2010), which were verified useful for extra-
cting effective information about the inner structure of matrix
data, as well as reducing the computational complexity of the
extraction. It is natural to raise the question: For the existing
vector-based classifiers, such as the SVM and FNN methods, can
they be extended for matrix input?

Neural networks have played an important role in pattern recogni-
tion (Bishop, 1995; Lin et al., 1997; LeCun et al., 1998; Shang et al.,
2006). In order to classify matrix data directly, and to preserve the
matrix or 2D feature structure effectively, Lu et al. (2014) proposed a
novel classifier, the two-dimensional neural network with random
weights (2D-NNRW) method, and achieved good performance on face
recognition. In fact, it is an extended 2D single hidden layer feed
forward neural network (2D-SLFN) model that employs left and right
projecting vectors to regress matrix inputs. Additionally, it uses the
random idea to train the network, i.e. it randomly sets the left and
right projecting vectors and the hidden biases, and then determines
the output weights by solving a linear equation system. The results
obtained in Lu et al. (2014) show that the use of 2D-SLFN improves
face recognition accuracy.

The randomness in the NNRW algorithm can be understood in
deeper detail when we consider the function approximation with
Monte Carlo (MC) methods. It was shown in Igelnik and Pao (1995)
that any continuous function defined on a compact set can be

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2015.03.010
0952-1976/& 2015 Elsevier Ltd. All rights reserved.

☆Supported by the National Natural Science Foundation of China (Nos. 61272023
and 91330118) and Zhejiang Provincial Natural Science Foundation of China (No.
LY14A010027).

n Corresponding author.
E-mail address: feilongcao@gmail.com (F. Cao).

Engineering Applications of Artificial Intelligence 42 (2015) 57–66

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2015.03.010
http://dx.doi.org/10.1016/j.engappai.2015.03.010
http://dx.doi.org/10.1016/j.engappai.2015.03.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.03.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.03.010&domain=pdf
mailto:feilongcao@gmail.com
http://dx.doi.org/10.1016/j.engappai.2015.03.010


represented by a limit-integral of a multivariate continuous func-
tion that is integrated in parameter space. Although using the
NNRW algorithm can simplify the learning steps taken by SLFNs,
the following issues still remain in both the NNRW and 2D-NNRW
methods:

� The number of hidden nodes should be sufficiently large and
supervised initialization is needed in order to model and
compensate for the system's uncertainties.

� There exists an over-fitting phenomenon caused by many
additional hidden nodes in the NNRW method due to the MC
approximating approach.

� There is a predictive instability caused by randomly assignment
of nonlinear weights, and the way of learning SLFNs with
NNRW methods using singular value decomposition (SVD)
usually produces large magnitude linear weights, which makes
the networks highly sensitive to new data.

To overcome these issues, we have attempted to fully train the
network with the aim of implementing incremental gradient based
learning for 2D-SLFN. A learning algorithm called two-dimensional
back-propagation (2D-BP) is proposed, where a momentum modifica-
tion is added to improve convergence. A series of comparative studies
of handwritten digits and face-image classification were carried out.
The results of the testing datasets are promising, and support a
positive statement regarding their performances among the 1D-BP
and 2D-NNRW methods.

The rest of this paper is organized as follows. FNNs models and
their corresponding training algorithms are reviewed in Section 2.
A detailed description of our method is given in Section 3. An
evaluation of the performance of our algorithm, the handwritten
digits and face datasets employed in the experiments, and our
results, which include comparisons and discussions, are presented
in Section 4. Conclusions are presented in the final section.

2. FNN models and learning

2.1. Single hidden-layer feedforward neural networks

Generally, a SLFN is described as follows:

f ðxÞ ¼
XL

k ¼ 1

βkgðw>
k xþbkÞþα; ð1Þ

where x is the input pattern vector, wk ¼ ½wk1;wk2;…;wkd�> , bk are
input layer weights and biases, respectively, and βk ¼ ½βk1;

βk2;…;βko�> and α are the output layer weights and biases,
respectively.

It is true that SLFNs are universal approximators (Hornik et al.,
1989; Cybenko, 1989; Barron, 1993), even when the hidden-layer
weights and bias are randomly assigned. In the case that weights
and bias are randomly assigned, i.e., the input layer weights wk

and biases bk as defined on a probabilistic space SpðΩ; PÞ, where
ðΩ; PÞ should be determined in the learning stage, then we just
need to tune the linear weights ðβ;αÞ, and call SLFN as a neural
network with random weights (NNRW) (Schmidt et al., 1992). It
has been proved that the NNRW's approximation error converges
to zero with the order ðC=

ffiffiffi
L

p
Þ (Igelnik and Pao, 1995; Pao et al.,

1994), where L is the number of hidden nodes and C is a constant.

Notations

o the dimensionality of the output
d the dimensionality of the vector input
m the first dimensionality of the matrix input
n the second dimensionality of the matrix input
uk the left projection vector on the kth hidden node
vk the right projection vector on the kth hidden node
gð�Þ the active function
L the number of hidden nodes
tp the expected output of the pth pattern
yp the actual output on the pth pattern

We have attempted to approximate the function y¼ ex�
x sin ðxÞ cos ðxÞ using SLFNs (i.e. randomly generate 50 points on
the interval ð�7;2Þ). Both the NNRW algorithm and the general
gradient based full network training (BFGS) can achieve sufficient
precision (see Fig. 1). However, they are different approaches that
result in different problems.

When using the NNRW method, which is motivated by Monte
Carlo integration, it only offers a statistical measure of the
approximation quality. Its approximation rate is achievable only
when the number of hidden nodes in the network is sufficient
large (Tyukin and Prokhorov, 2009). After the input layer weights
and biases are randomly assigned, we always use the least square
method to tune the SLFN, which results in large-magnitude linear

0 50 100 150 200 250 300 350 400 450 50010−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Tr
ai

ni
ng

 A
cc

ur
ac

y

Number of hidden neurons

SLFN with NNRW train

0 100 200 300 400 500 600 700 800 900 1000
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iteration

Tr
ai

ni
ng

 A
cc

ur
ac

y

SLFN with BFGS train

5 hidden neurons
10 hidden neurons
25 hidden neurons
100 hidden neurons

Fig. 1. Neural network training.

K. Dai et al. / Engineering Applications of Artificial Intelligence 42 (2015) 57–6658



Download English Version:

https://daneshyari.com/en/article/380358

Download Persian Version:

https://daneshyari.com/article/380358

Daneshyari.com

https://daneshyari.com/en/article/380358
https://daneshyari.com/article/380358
https://daneshyari.com

