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a b s t r a c t

Integration of a functional HAZOP approach with dynamic Bayesian network (DBN) reasoning is
presented in this contribution. The presented methodology can unveil early deviations in the fault
causal chain on line. A functional HAZOP study is carried out firstly where a functional plant model (i.e.,
MFM) assists in a goal oriented decomposition of the plant purpose into the means of achieving the
purpose. DBN model is then developed based on the functional HAZOP results to provide a probability-
based knowledge representation which is appropriate for the modeling of causal processes with
uncertainty. An intelligent fault diagnosis system (IFDS) is proposed based on the whole integrated
framework, and investigated in a case study of process plants at a petrochemical corporation. The study
shows that the IFDS provides a very efficient paradigm for facilitating HAZOP studies and for enabling
reasoning to reveal potential causes and/or consequences far away from the site of the deviation online.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modern technological advances are creating a rapidly increas-
ing number of complex engineering systems, processes and
products. It is their scale, nonlinearities, interconnectedness, and
interactions with humans and the environment that can make
these complex process plant systems fragile, when the cumulative
effects of multiple abnormalities can propagate in numerous ways
to cause systemic failures. One of the main reasons behind
accidents is that it is often too late to correct the problems by
the time they are detected. Given the size, scope, and complexity
of the systems and interactions it is becoming difficult for plant
personnel to anticipate, diagnose and control serious abnormal
events in a timely manner. In a large process plant, there may be as
many as 1500 process variables observed every few seconds
leading to information overload. Furthermore, the measurements
may be insufficient, incomplete and/or unreliable due to a variety
of causes such as sensor biases or failures (Venkatasubramanian,
2005). Usually monitoring systems such as DCS have no ‘under-
standing’ of the actions required for changes in the process state,
or of actions that an operator takes to correct the state. This often
leads to alarms that many cases are inappropriate, and require
interpretation from the operator.

Hazard studies provide a systematic methodology for identifi-
cation, evaluation and mitigation of potential process hazards
which can cause severe human, environmental and economic
losses. However there exist nonlinear interactions among a large
number of interdependent components and the environment. The
nonlinear interactions can be further compounded by human
errors, equipment failures, and dysfunctional interactions among
components and subsystems, that make accident scenarios diver-
sified, random and can also lead to “emergent” behavior (Pasman
et al., 2013).

There exist considerable incentives in developing appropriate
diagnostic methodologies for monitoring, analyzing, interpreting,
and controlling such abnormal events in complex process plant
systems. Effective diagnosis of the fault causes and prediction of
their consequence can reduce investigation time of abnormal
events and improve the effectiveness of accident prevention.
Diagnosis methods for process system can be mainly divided
into two categories: model-based diagnosis methods
(Venkatasubramanian et al., 2003a, 2003b) and historical data-
based diagnosis methods (Venkatasubramanian et al., 2003c;
Wang et al., 2008). Data-based methods are usually used to detect
abnormal event and set off alarms, but they are unable to reveal
the underlying causes which is of capital importance for field
operators. Whereas in order to present the cause-consequence
relationship in complex process plant, various models have been
put forward to identify potential hazard sometimes far away from
the alarming position, such as Signed Directed Graph (SDG)
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(Chang and Chen, 2011; Ram et al., 2004; He et al., 2014), Petri
network (Babaie et al., 2013), FSN (Gabbar et al., 2014) and a
variety of methods are integrated for some typical complex
systems (Zhang et al., 2005; Maurya et al., 2006).

The main advantages of model-based approaches consist in the
causal models which capture more deep-level knowledge than a
data-base method (Maurya et al., 2007). In general, models for the
analysis of processes have been derived from expert or operator
knowledge of the process or from known model equations that
define the behavior of the system. The cornerstone of above model-
ing is fault propagation analysis (Gabbar, 2007). Yuan (2011) indi-
cated that fault propagation and its cause–effect relationship in the
system were of priority with regard to the fault diagnosis. Among
qualitative reasoning methods, HAZard and OPerability (HAZOP)
analysis is the preferred approach in the chemical process industry.
HAZOP is a structured and systematic examination of a process
operation so as to identify and evaluate the existing or impending
problems (Baybutt, 2015). A typical HAZOP provides an identification
of accidental events (top events, TEs) and operability problems by
using logical sequences of cause-deviation-consequence of process
parameters. Such method is usually used offline but can be helpful
for the design of online FDI algorithms by identifying critical
components to be monitored. Therefore the integration of model-
based approaches and HAZOP analysis is of great interest as an
interesting solution for fault diagnosis (Ruiz Diego et al., (2001);
Venkatasubramanian et al., 2000).

Unfortunately, in spite of the abundant representation of
specialized knowledge and expertise during HAZOP study, it is
not possible to develop a systematic way to fully study all the fault
propagation behavior. Some of the weaknesses that were
addressed relate to the coupling of vulnerabilities of the method
with the human limitations of practitioners; causes of deviations
and the identification of initiating events (Baybutt, 2015).
Rodríguez and de la Mata (2012) presented the use of D-
higraphs to perform HAZOP studies to perform fault propagation
analysis. Rossing et al. (2010) presented a HAZOP methodology
where a functional plant model assisted in a goal oriented
decomposition of the plant purpose into the means of achieving
the purpose. This approach leaded to nodes with simple functions
from which the selection of process and deviation variables
followed directly. The method provided a good way for imple-
mentation into a computer aided reasoning tool to perform root
cause and consequence analysis. However the rule based reason-
ing in functional model also may be combined with case based
reasoning techniques (van Paassen and Wieringa, 1999). Another
reason that limits functional model in online diagnosis for a real
industrial plant lies in its qualitative reasoning capability rather
than quantitative way. That is to say, it does not lend itself to
quantitative analysis, to rank the effects of failures and to study
the relative effectiveness of the proposed corrective actions
(Giardina and Morale, 2015).

Therefore some disadvantages of above qualitative reasoning
consist in the poor capability to handle uncertainties in the cause–
effect structure, limited representation of observable node states,
and only diagnosis of single faults is possible (Ould-Bouamama et
al., 2012). Probabilistic graphical models are highly advantageous
for analyzing the cause–effect relationship with uncertainty. The
probabilistic graphical model consists of a graphical structure and
a probabilistic description of the relationships among random
variables under system uncertainty. Bayesian network is one of the
major classes of graphical models and has been applied to various
fields. Bayesian networks have been employed in order to identify
the root cause of process variations and give a probabilistic
confidence level of the diagnosis (Weidl et al., 2005; Alaeddini
and Dogan, 2011; Mori et al., 2014; Hu et al., 2015). Nevertheless,
for Bayesian network based process monitoring techniques,

potential root causes need to be specified and added to hidden
nodes in advance. The biggest problem with application of
Bayesian network based methods is that they require the in-
depth process knowledge to design the network structure for
well-performed process diagnosis. In addition, it can be time-
consuming to build precise graphical model for complex pro-
cesses, and it is also challenging to check the accuracy of the
inferred structure.

It is well known that, in general, no single method is sufficient
for a wide range of problem-solving tasks. The paper presents a
functional approach integrated with HAZOP study to hazard
analysis and develops a functional model as a basis for dynamic
Bayesian network (DBN) reasoning on causes and consequences of
deviations monitored by condition monitoring system. In this
paper, the use of multilevel flow modeling is proposed as a
technique to obtain a representation of technical processes sui-
table for reasoning about goal oriented actions in complex and
heterogeneous processes. While reasoning on the basis of a DBN
model representing hazard cause–effect relationship to handle
uncertainty should enable the construction of intelligent aids for
the operator, that can function as a better assistant for presently
used DCS based monitoring systems. The resulting tool is called
intelligent fault diagnosis system (IFDS). By the reasoning system
implemented using inherent DBN reasoning scheme, the most
possible initial reason(s) when observable deviations are detected
by condition monitoring system can be found out accurately, and
also the future possible consequences can be predict timely for
proactive maintenance or emergency decision making.

Section 2 presents a functional HAZOP study based on the
qualitative MFM model of the process system with a few examples
applied on a FCCU plant. Section 3 presents an intelligent fault
diagnosis system (IFDS) based on the whole functional HAZOP and
DBN integrated framework. In this section, after a brief presenta-
tion of basic DBN theory and its interest for quantitative causal
reasoning, it is introduced how the functional HAZOP results are
transformed to a DBN model for abnormal event identification and
fault cause online diagnosis. The developed methodology is
applied in Section 4 for online diagnosis of a FCCU process. Finally,
Section 5 concludes the work.

2. MFM modeling and functional HAZOP study

In this paper multilevel flowmodeling (MFM) as one of the main
functional modeling method is used to represent the knowledge of
plant functions. MFM combines the means-end dimension with the
whole-part dimension, to describe the functions of the process
under study and enable modeling at different abstraction levels.
MFM is a modeling methodology which has been developed to
support functional modeling of process plants involving interac-
tions between material, energy and information flows (Lind, 1994).
Along the means-end dimension MFM represents a system in terms
of goals, objectives, functions and components each of which can be
described at different levels of part-whole decomposition (see
Fig. 1). This means that an MFM model consists of chunks of

Fig. 1. Means-ends and part-whole dimensions in MFM.
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