
The application of iterative interval arithmetic in path-wise test
data generation

Ying Xing n, Yun-Zhan Gong, Ya-Wen Wang, Xu-Zhou Zhang
State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

a r t i c l e i n f o

Article history:
Received 12 December 2014
Received in revised form
31 May 2015
Accepted 27 July 2015
Available online 27 August 2015

Keywords:
Test data generation
Constraint satisfaction problem
Interval arithmetic
Arc consistency
AC-3

a b s t r a c t

Research of path-wise test data generation is crucial and challenging in the area of software testing,
which can be formulated as a constraint satisfaction problem. In our previous research, a look-ahead
search method has been proposed as the constraint solver for path-wise test data generation. This paper
analytically studies interval arithmetic of the search method in detail, which enforces arc consistency,
and introduces the iterative operator to improve it, aiming at detecting infeasible paths as well as
shortening generation time. Experiments were conducted to compare the iterative operator with the
classical look-ahead operator AC-3, and to compare the test data generation method using the iterative
operator with some currently existing methods. Experimental results validate the effectiveness and
practical deployment of the proposed iterative method, and demonstrate that it is applicable in
engineering.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Automating the process of software testing is a very popular
research topic and is of real interest to the industry (Bertolino,
2007; Elsayed, 2012), because manual testing is time-consuming
and error-prone, and is even impracticable for large-scale real-
world programs in engineering (Weyuker, 1999). As a basic problem
in software testing, the automation of path-wise test data genera-
tion is particularly important since many problems in software
testing can be transformed into it, and people have put great efforts
in this field both commercially and academically.

Currently, most of the commercial tools implement a test data
generation strategy that uses constant values found in the program
under test (PUT) or values that are slightly modified by means of
mathematical operations (Galler and Aichernig, 2013). Take Cþþ
test for example, which is a commercial software quality improve-
ment tool for C/Cþþ , it selects randomly a value from a pre-
defined pool of values, such as minimum and maximum values, �1,
þ1 and 0 for integer types, and constant values given within the
PUT. But when this kind of constraint solvers reaches their limita-
tions, they use random-based techniques, indicating that they are
not totally intelligent and automatic.

From an academic point of view, the problem of path-wise test
data generation can be formulated into a constraint satisfaction
problem (CSP) (Shan et al., 2004). For the purpose of solving the

CSP, it is required to abstract the constraints to be met, and
propagate and solve these constraints to obtain the test data. It is
also strongly demanded to have precision in generating test data
and the ability to prove that some paths are infeasible. DeMilli and
Offutt (1991) proposed a fault-based technique using algebraic
constraints and bisection to describe test data designed to find
particular types of faults. Adtest (Gallagher et al., 1997) only
considered one predicate or one input variable and iterated the
solving procedures, which was relatively inefficient and not suitable
for real-world programs in engineering. Gupta et al. (1999) pre-
sented a program execution-based approach to generate test data
for a given path. The technique derived a desired input for a test
path by iteratively refining an arbitrarily chosen input. Robschink
and Snelting (2002) statically converted the program into a Static
Single Assignment (SSA), normally resulting in large constraint
systems, which sometimes contained variables irrelevant to the
problem to be solved. BINTEST (Beyleda and Gruhn, 2003) adopted
bisection to guide the search process, which, however, might cut
the domains of variables that probably contained some solutions.
Cadar et al. (2008) proposed a tool named KLEE and employed a
variety of constraint solving optimization methods to reach the goal
of high coverage. Wang et al. (2013) proposed an interval analysis
algorithm using forward dataflow analysis, and adopted Choco
(Team, 2010) as the constraint solver. But no matter what techni-
ques are adopted, there are two challenges for the researchers in
this field. One is infeasible path detection, without which much of
the effort, statistically accounted for 30–75% (Hermadi et al., 2014)
of the computation consumption, will become idle. The other is
generation time reduction, which is especially important when the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2015.07.021
0952-1976/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: faith.yingxing@gmail.com (Y. Xing).

Engineering Applications of Artificial Intelligence 45 (2015) 441–452

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2015.07.021
http://dx.doi.org/10.1016/j.engappai.2015.07.021
http://dx.doi.org/10.1016/j.engappai.2015.07.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.07.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.07.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2015.07.021&domain=pdf
mailto:faith.yingxing@gmail.com
http://dx.doi.org/10.1016/j.engappai.2015.07.021


test beds are shifted from small, toy ones to large-scale engineering
applications, for the reason that too long generation time is
intolerable.

Aiming at constructing a highly automatic test data generation
tool that can be used for programs in engineering, we put forward a
heuristic method best-first-search branch and bound (BFS-BB)
(Xing et al., 2014), adopting branch and bound (BB), which is a
classical search algorithm in artificial intelligence. For the purpose
of infeasible path detection and generation time reduction as
mentioned above, we make improvements on interval arithmetic
in BFS-BB, which is used for arc consistency checking. All our work
is based on the abstract memory model (AMM) (Tang et al., 2012) in
Code Test System (CTS) (http://ctstesting.cn/), which tests real-
world programs written in C programming language. AMM under-
lying automatic test data generation maintains a table of memory
states, and the constraints related to the structure of data types can
be represented by the table. As for the test data generation method
in CTS, the main task is to construct an efficient constraint solver.
We take numeric types as an example to describe our method in
this paper.

The rest of this paper is organized as follows. Section 2 provides
the background and motivation of this paper. In Section 3, we give
the theoretical analysis of interval arithmetic and propose the
iterative operator to improve it. Two cases are studied in detail to
explain the function of the iterative operator in Section 4. In
Section 5, we make experimental analyses and empirical evalua-
tions of the proposed method. Section 6 concludes this paper and
highlights directions for future research.

2. Background and motivation

As mentioned in Section 1, the problem of path-wise test data
generation is in essence a CSP (Kasprzak et al., 2014), where the path
refers to a sequence of nodes in a control flow graph (CFG) (McMinn,
2004). To be specific, X is a set of variables {x1, x2,…, xn}, D¼{D1, D2,
…, Dn} is a set of domains, and DiAD (i¼1, 2,…, n) is a finite set of
possible values for xi. For the path to be covered (denoted as p), D is
defined based on the variables’ acceptable ranges. One solution to the
problem is a set of values to instantiate each variable inside its
domain denoted as {x1↦V1; x2↦V2;…; xn↦Vn}, ViADi, to make p
feasible, meaning that each constraint defined by the PUT along p
should be met. It should be noted that one solution is enough for
path-wise test data generation, and it is not necessary to try to find
all the solutions.

A CSP is generally solved by backtracking search strategies.
During the search process, variables are divided into three sets:
past variables (short for PV, already instantiated), current variable
(now being instantiated), and future variables (short for FV, not yet
instantiated). The idea of the search algorithms is to extend partial
solutions. At each step, a variable in FV is selected and assigned a
value from its domain to extend the current partial solution. It is
checked whether such an extension may lead to a possible
solution of the CSP and the subtrees containing no solutions based
on the current partial solution are pruned.

The techniques for improving a search algorithm are categor-
ized as look-ahead and look-back methods. Look-ahead methods
(Frost and Dechter, 1995; Schaerf, 1997) are invoked whenever the
search is preparing to extend the current partial solution, and they
concern the following problems: (1) how to select the next
variable to be instantiated or to be assigned a value; (2) how to
select a value to instantiate a variable; (3) how to reduce the
search space by maintaining a certain level of consistency. Look-
back methods are invoked whenever the search encounters a
dead-end and is preparing for backtracking.

The third problem in look-ahead methods is the focus of this
paper, which is often solved by local consistency (including node
consistency, arc consistency, and path consistency) techniques that
associate a CSP with a network of relations, where nodes represent
variables and arcs or edges represent constraints. Arc consistency
(Cooper et al., 2010; Lecoutre and Prosser, 2006) is the most widely
used method, which means that every consistent assignment to a
single variable can be consistently extended to a second variable.
AC-3 is the simplest arc consistency checking algorithm and is
known to be practically efficient (Mackworth, 1977; Wallace, 1993).
AC-3 involves a series of tests between pairs of constrained
variables. In the enforcement of AC-3, it is not required to process
all constraints if only a few domains have changed, and the
operations are conducted on a queue of constraints to be processed.

Arc consistency is a basic technique for solving CSPs, but
consistency checking algorithms seldom solve CSPs by themselves.
Actually, they often assist search algorithms in two ways. One is
preprocess before the search starts, and the other is combining with
search algorithms to fulfill the search process by reducing the
domain of the CSP in question, such as forward checking. Generally,
there are arc consistency checking methods within backtracking
search algorithms, including BFS-BB as described below.

Xing et al. (2014) described BFS-BB in detail that carries out
depth-first search with backtracking, in which the arc consistency
checking method interval arithmetic is involved in both preprocess
and the search process. Adopting the MC/DC coverage criterion,
BFS-BB took nearly 110 min to test the project aa200c available at
http://www.moshier.net/, which includes 77 functions. The rela-
tively large time consumption is one drawback of BFS-BB. Another
drawback of BFS-BB is its inability to detect infeasible paths in
advance. According to statistics, there are nearly 34% infeasible
paths in aa200c. If these paths are considered feasible, there will be
large amount of computation wasted in trying to generate test data
for them. Fig. 1 shows an example test 1 to explain why there are
infeasible paths that were not detected by BFS-BB. For the sake of
easy explanation, we try to generate test data for the path which
passes all the if statements and finally reaches the print statement.
As described in Xing et al. (2014), the set of the domains of all the
variables is obtained after the last branch predicate x2410, which
is {x1:[�1, �11], x2:[11, þ1]}. It can be intuitively found that x1
is negative and x2 is positive, which, however, is in contradiction
with the first predicate x14x2. In other words, the path to be
covered is infeasible. But BFS-BB is unable to judge the feasibility of
the path in advance due to the conservativeness of interval
arithmetic, that is, it sometimes provides much larger intervals.
Consequently, the computation consumed on the search will be
meaningless. Aiming at solving the two problems with BFS-BB as
well as test data generation methods, we made improvements on
interval arithmetic based on the analysis in Section 3.

3. Methodology

In this section, we give detailed analysis on interval and
interval arithmetic, which is of great importance to BFS-BB,
because it is the key part that is in charge of enforcing arc
consistency. Based on the analytical result, an iterative operator
is proposed.

Fig. 1. Program test 1.

Y. Xing et al. / Engineering Applications of Artificial Intelligence 45 (2015) 441–452442

http://www.ctstesting.cn/
http://www.moshier.net/


Download	English	Version:

https://daneshyari.com/en/article/380395

Download	Persian	Version:

https://daneshyari.com/article/380395

Daneshyari.com

https://daneshyari.com/en/article/380395
https://daneshyari.com/article/380395
https://daneshyari.com/

