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a b s t r a c t

The main interest of this paper is to illustrate a new representation of the Principal Component Analysis
(PCA) for fault detection under a Conditional Gaussian Network (CGN), a special case of Bayesian
networks. PCA and its associated quadratic statistics such as T2 and SPE are integrated under a sole CGN.
The proposed framework projects a new observation into an orthogonal space and gives probabilities on
the state of the system. It could do so even when some data in the sample test are missing. This paper
also gives the probabilities thresholds to use in order to match quadratic statistics decisions. The
proposed network is validated and compared to the standard PCA scheme for fault detection on the
Tennessee Eastman Process and the Hot Forming Process.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, systems failures can potentially lead to serious
consequences for human, environment or material, and some-
times fixing them could be expensive and even dangerous. Thus, in
order to avoid these undesirable situations, it becomes very
important and essential for current modern complex systems to
early detect any changes in the system nominal operations before
they become critical. To do so, several detection methods have
been developed and enhanced these last years. These methods can
be broadly indexed into two principal approaches, named model-
based methods and data-driven methods. Model-based methods
are powerful and efficient widely used methods. They are related
on the system analytical representation (detailed physical model).
However, obtaining this representation for complex, large-scale
systems is often not possible or very tricky and requests a lot of
time and money. To deal with that, data driven methods have
received a significant attention. These methods unlike model-
based ones use only measures taken directly from the system (or
their transformation) at different times (historical data).

Several data driven methods for faults detection have been pro-
posed (Yin et al., 2012; Ding, 2012; Qin, 2012; Venkatasubramanian
et al., 2003; Chiang et al., 2001). Many of them are based on rigorous
statistical development of system data and one can mention Subspace
aided APproach (SAP), powerful data-driven tools developed to address
the problems of building an accurate physical model for complex

systems. Partial Least Squares (PLS), Principal Component Analysis
(PCA) and their variants (dynamic, non-linear, kernel, and probabilistic)
are statistical methods widely used for data reduction and fault
detection purpose.

PCA is a well-known and powerful data-driven technique
significantly used in application for fault detection but also in
many other fields due to its simplicity for model building and
efficiency to handle a huge amount of data. In order to identify at
any moment if the system is In Control (IC) or not (the system is
Out of Control OC), it is, according to Ding et al. (2010) and Qin
(2003), associated to statistics with quadratic forms. These statis-
tics are not only associated to PCA but also to many others data
driven and model-based methods. Among these statistics, two
well-known and used statistics are the T2 and SPE (Squared
Prediction Error) statistics. These two are generally combined to
complement each other and thus enhance the fault sensitivity.

Meanwhile, in the last decades, Bayesian networks (BN) have been
also proposed for fault detection (Yu and Rashid, 2013; Verron et al.,
2010a; Huang, 2008; Roychoudhury et al., 2006; Schwall and Gerdes,
2002; Lerner et al., 2000). BN's are powerful tools designed by experts
and/or learned from data. They offer a Probabilistic/statistical frame-
work that able to integrate information from different sources which
may be of interest for fault detection. Indeed, the use and the fusion of
all the information available on the system (as causal influences (e.g.
graphical representations of variables dependencies), probabilistic
fault detection decisions, maintainability information, components
reliability and so on) could enhance and provide better decisions. On
this perspective, we propose to use a BN in order to model PCA fault
detection techniques.
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Another important challenge is to handle on-line missing observa-
tions. Themost used approaches are based on the imputationmethods,
which try to complete the missing values. However, these methods are
time consuming and depend strongly on the missing rate of the
original sample. The proposed network, unlike most of the proposed
Bayesian networks for fault detection, is able to respect a false alarm
rate, model PCA fault detection scheme and handle automatically
missing observationwithout delay or imputation. The main interests of
this paper can be described in few points : (1) a generalized form of the
quadratic statistics (e.g. T2, SPE) under a probabilistic tool, (2) a
probabilistic framework for fault detection purpose, managing both
PCA (systematic and residual subspaces) and statistics under a single
BN using discrete and Gaussian nodes, and (3) probabilities about the
system state could be provided, even when data on line are missing (a
non-imputation method to handle unobserved variable s).

The remainder of this paper is structured as follows. In Section
2 a brief description of some definitions and tools needed to
develop our proposals is given, Section 3 describes and introduces
the development of PCA under CGNs for fault detection purpose.
This is followed by a comparison between our proposal and the
standard PCA, two cases studies are given. Finally, conclusions and
outlooks are outlined in the last section.

2. Tools

2.1. Bayesian Networks

2.1.1. Definition
A Bayesian Network (BN) (Jensen and Nielsen, 2007) is a

probabilistic graphical model. It is associated and consists of the
following:

� a directed acyclic graph G, G¼(V, E), where V is the vertexes set
of G (nodes), and E is the edges set of G (arcs),

� a finite probabilistic space ðΩ;Z; pÞ, with Ω a non-empty space,
Z a collection of the subspaces of Ω and, p a probability
measure on Z with pðΩÞ ¼ 1,

� a set of random variables x¼ x1;…; xm associated with the
vertexes of the graph G and defined on ðΩ;Z; pÞ, such that:

pðx1;x2;…; xmÞ ¼ ∏
m

i ¼ 1
pðxi jPaðxiÞÞ ð1Þ

where PaðxiÞ is the set of the parent nodes of xi in G,

� a conditional probability table (CPT) associate to each node,
given its parents, describing probabilistic dependencies
between variables,

� calculations (e.g. based on Bayes rule) named inference, used
given the availability of new information (evidence) about one
or several G nodes, to update the network (e.g. to give the
posterior probabilities).

2.1.2. Conditional Gaussian Networks
A particular form of Bayesian networks is the Conditional

Gaussian Network (CGN). Each node in the network represents a
random variable that may be discrete or Gaussian (univariate/
multivariate). However, following Lauritzen and Jensen (2001),
Lauritzen (1992), for the availability of exact computation (infer-
ence) discrete nodes are not allowed to have continuous parents,
they have only discrete parents. Thus, each Gaussian node, given
its Gaussian parents follows a Gaussian linear regression model
(linear combination of its continuous parents observations), with
parameters depending on its discrete parents. In this paper, we
restrict our attention to two kinds of Gaussian nodes.

First, the linear Gaussian node, a Gaussian node y with only
Gaussian parentsΦ1;…;Φd. Its conditional distribution is given by

pðyjΦ1 ¼ϕ1;…;Φd ¼ϕdÞ ¼N ðμyþW1ϕ1þ…þWdϕd; ΣyÞ ð2Þ
where μy is a parameter governing the mean of y, Σy is the
covariance matrix of y, W1;…;Wd are the regression coefficients.
Note that, the joint distribution p ðy; PaðyÞÞ is also Gaussian. If Σy is
null then (2) represents a deterministic linear relationship
between y and its parents.

The second node, the conditional linear Gaussian node without
Gaussian parents, a Gaussian node y with only discrete parents
PaðyÞ ¼ ðΘ1;…;ΘdÞ. It is linear Gaussian for each value kPaðyÞ of its
parents PaðyÞ. Its conditional distribution could be written as below:

pðyjPaðyÞ ¼ kPaðyÞÞ ¼N ðμkPaðyÞ ;ΣkPaðyÞ Þ; kPaðyÞAKPaðyÞ ð3Þ

where μkPaðyÞ and ΣkPaðyÞ are respectively the mean and the covariance
matrix of y given the values kPaðyÞ of its parents. KPaðyÞ represent the
different values that the parents of y can take.

2.1.3. Discriminant analysis and CGN
Many Conditional Gaussian Networks can be used to solve

discrimination problems between different data classes. Their
nodes set V always include a discrete node indexing the different

Nomenclature

0 zero or a vector of zeros, depending on the context
Bi; B̂i; ~Bi respectively rows of the eigenvectors matrix P, P̂ , ~P
cΔ coefficient of variability
e natural exponential function
E set of an BN arcs
F Fisher distribution
gα the normal deviate corresponding to the upper 1�α

percentile
I identity matrix
N ðμ;ΣÞ Gaussian (normal) probability density function (pdf)

with μ-means and covariance matrix Σ
N number of samples
P;A; P̂ ; Â; ~P ; ~A eigenvectors matrices
p a probability measure: a probability distribution or a

probability density function. Its meaning will be clear
from the context

V set of an BN nodes
x; xþ ; x� ; y; t multivariate variables
X normalized set of samples of x
X̂ ; ~X respectively the systematic and noise part of X
Z; Ẑ ; ~Z spaces generated by PCA
α value of the error of first kind
ϵ error model
Λ set of non-negative real eigenvalues
ω ratio of p(OC) to p(IC)
CLΔ control limit of the quadratic statistic Δ
θ1;θ2;θ3;h0 parameters used for the calculation of CLSPE
ζICΔ ; ζ

OC
Δ probabilistic control limits given the quadratic statistic

Δ and the states : IC, OC
PaðxÞ set of parent nodes of x
A⧹fBg A except B
E½x�; cov½x� respectively the expected value and the covariance

of the variable x
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