
A new approach to active rule scheduling

Abbas Rasoolzadegan a,n, Rohollah Alesheykh b, Mohammad Reza Meybodi c

a Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
b Faculty of Engineering, Payame Noor University (PNU), Iran
c Department of Computer Engineering and IT, Amirkabir University of Technology, Iran

a r t i c l e i n f o

Article history:
Received 13 July 2014
Received in revised form
13 November 2014
Accepted 14 November 2014
Available online 16 December 2014

Keywords:
Active database management systems
Probability estimation
Active rule scheduling
Learning automata

a b s t r a c t

Active database systems (ADSs) react automatically to the occurrence of predefined events by defining a
set of active rules. One of the main modules of an ADS is the rule scheduler, which has a significant
impact on the effectiveness and efficiency of ADSs. During the rule scheduling process, the rule
scheduler is responsible for choosing one of the activated or ready-to-be-executed rules to evaluate its
condition section or execute its action section, respectively. This process continues until there is no rule
to be evaluated or executed. In this research, we evaluate and compare existing rule scheduling
approaches in a laboratory environment based on a three-tier architecture. There are criteria used for the
evaluation and comparison of rule scheduling approaches: Average Response Time, Throughput,
Response Time Standard Deviation, Time Overhead per Transaction, and CPU Utilization. The three first
criteria are used to evaluate the effectiveness, and the latter two criteria are used to evaluate the
efficiency of rule scheduling approaches. In this paper, a new approach, referred to as EX-SJFEsTLA, is
proposed to improve the rule scheduling process, using a learning automaton. In our laboratory
environment, EX-SJFEsTLA is compared with those rule scheduling approaches that are unconstrained
as EX-SJFEsTLA is. Unconstrained scheduling approaches serially schedule the rules that do not have any
priorities or deadlines. The results of experiments revealed that the proposed approach improved the
rule scheduling process according to the evaluation criteria.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Common (Traditional) database systems are often of a passive
nature. This means that operations such as querying, updating, insert-
ing, deleting, and reporting are performed only in the event that users
request them. Database Management Systems, abbreviated to DBMSs,
cannot automatically react when various events occur. Many applica-
tions such as real-time expert systems (Hangos et al., 2001; Farias et al.,
2009), warehousing programs, the automation of processes, and com-
plex financial calculations in stock markets need automatic control for
handling events that have occurred. Active Database Systems (Kasbon
et al., 2012), abbreviated to ADSs, meet the requirements of such
applications by defining ECA (Event-Condition-Action) rules, referred to
as active rules. An ECA rule has three main sections: Event, Condition,
and Action. An ECA rule for the context of buying and selling stocks
(Zong et al., 2007) is defined as follows:

DEFINE LowRisk This active rule is
named “LowRisk”

ON Stock.UpdatePrice Event section
IF (Stock.policy¼Low_risk) and (Stock.
priceoStock.initprice n e); (0oeo1)

Condition section

DO Stock.Buy Action section

In addition to event, condition, and action components, each
active rule has two other features: event-condition coupling mode
and condition-action coupling mode. When an event E1 occurs, the
event-condition coupling mode of each rule triggered by E1
determines the time when the condition section of the rule should
be evaluated. There are three choices for the event-condition
coupling mode of each active rule: immediate, deferred, and
independent. If the event-condition coupling mode of an activated
rule is immediate, the condition of the rule should be evaluated
immediately. If the event-condition coupling mode of an activated
rule is deferred, the evaluation of the condition of the rule should

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2014.11.005
0952-1976/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: rasoolzadegan@um.ac.ir (A. Rasoolzadegan),

alesheykh@pnu.ac.ir (R. Alesheykh), meybodi@aut.ac.ir (M.R. Meybodi).

Engineering Applications of Artificial Intelligence 39 (2015) 55–79

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2014.11.005
http://dx.doi.org/10.1016/j.engappai.2014.11.005
http://dx.doi.org/10.1016/j.engappai.2014.11.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.11.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.11.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.11.005&domain=pdf
mailto:rasoolzadegan@um.ac.ir
mailto:alesheykh@pnu.ac.ir
mailto:meybodi@aut.ac.ir
http://dx.doi.org/10.1016/j.engappai.2014.11.005


be deferred until the execution of the action section of the rule that
is being executed is terminated. If the event-condition coupling
mode of an activated rule is independent, the condition section of
the rule is evaluated only after the condition sections of all
activated rules with the immediate and deferred modes have been
evaluated. For example, suppose there are some activated rules,
waiting to be evaluated. The condition sections of the rules with
the independent event-condition coupling mode are not evaluated
until the condition sections of the other rules have been evaluated.
If the condition section of an activated rule is evaluated to true, the
condition-action coupling mode of the rule determines the time
when its action section should be executed.

Similarly, there are three choices for the condition-action coupling
mode of each rule: immediate, deferred, and independent. If the
condition-action coupling mode of a ready-to-be-executed rule (a rule
whose condition-section has been evaluated to true) is immediate, its
action section must be executed immediately. If the condition-action
coupling mode of a ready-to-be-executed rule is deferred, the execu-
tion of its action section should be deferred until the execution of the
action section of the rule that is being executed is terminated. If the
condition-action coupling mode of a ready-to-be-executed rule is
independent, the action section of the rule is executed only after the
action sections of ready-to-be-executed rules with immediate and
deferred modes have been executed.

Events can be classified as primitive or composite events.
Primitive events refer to elementary occurrences which are pre-
defined in the system. Primitive events are typically further
categorized as database events, temporal events, transaction
events, etc. Database events are related to database operations
and are further classified into Insert, Delete, and Update. A
temporal event can be an absolute point in time, defined by the
system clock (e.g., 9:00:00 a.m., April 10, 1988), relative (30 s after
event A occurred), or periodic (every day at midnight). As the name
implies, transaction events are kinds of events related to transac-
tions; for example, the beginning and end of a transaction are
events signaled at the beginning and end of the transaction. A
composite event is a set of primitive events which are combined
using event operators (such as “and”, “or,” and “not”) to form a new
event specification.

An ADS processes its active rules to automatically control various
events. The rules processing cycle, elaborated on in Section 2, consists of
the following steps (Meenakshi and Thiagarasu, 2014):

1) Event Signaling: When a primitive event occurs, the primitive
event detector signals it. In addition, the composite event
detector considers the occurring primitive events to investigate
the occurrence of composite events.

2) Rule Triggering: After an event is signaled, those ECA rules that
correspond to the signaled event are activated. One instance of
each activated rule is created, which includes some additional
information (such as a timestamp, a deadline, and an execution
time) depending on the scheduling mechanism used by the rule
scheduler. These instances are buffered to be used in the
next step.

3) Condition Evaluation: In this step, the rule scheduler sequen-
tially selects the instances created in the previous step, and
their conditions are evaluated. If the condition section of an
instance is evaluated to true, the instance is added to the ready-
to-be-executed buffer.

4) Transaction Selection: In this step, the rule scheduler selects
the ready-to-be-executed rules in order of priority. A transac-
tion is generated for each ready-to-be-executed rule based on
its action section. The transaction is then sent to the execution
unit. This step is also called the transaction scheduling phase.

5) Transaction Execution: The transactions generated in the
previous phase are executed in this step.

ADSs have many applications in controlling and automatic handling
of processes in different areas such as the stock exchange organization,
portfolio management systems, automatic traffic control systems, all
applications with continuous monitoring, and real-time systems as
real-time active database systems (Kasbon et al., 2012; Ale and Espil,
2003; Spokoiny and Shahar, 2007; Badia, 2003; Qiao et al., 2007). An
ADS plays the role of an automatic controller by defining and executing
several active rules. During the running of the system, several activated
rules with different event-condition and condition-action coupling
modes are waiting to be evaluated or executed.

There is an important question here: why is it important to have
an effective and efficient rule scheduling algorithm in ADSs? To
answer this question, consider a stock exchange system that uses
an ADS. This ADS has tens of thousands of users, and the number of
active rules in their rule-bases reaches hundreds of thousands of
rules. For example, suppose there are n users in the electronic
management system of the stock exchange. Each user has defined a
different number (m1; …;mn) of active rules. The definition of
these rules is illustrated in Table 16 (see Appendix). After each
update operation (i.e. edit, insert, or delete) in the electronic
management system of the stock exchange, thousands of rules
are activated. Suppose that in a stock exchange systemwith tens of
thousands of users, n0 number of users (n0on and n0 is rather big;
for example, n0 is about two or three thousands), define some rules
triggered by each update on the price of Mercedes Benz. When the
price of this stock is updated, in a moment, the corresponding rules
are activated. At this moment, the stock price of the Volvo
Company may be updated as well. And this may cause thousands
of other rules to be activated. Such scenarios may continue. There
are several similar scenarios that may happen during the running
of the electronic management system of the stock exchange. It is
obvious that during the running of these kinds of systems in the
real-world, many activated rules wait to be evaluated and exe-
cuted. And in these situations, even milliseconds matter. If a rule,
defined by user X, is not executed at the desired moment, the goal
of a user X is not satisfied. This goal may be “buying a stock A” or
“selling a stock B,” so user X does not obtain his/her expected
benefit. Thus, the importance of having an effective and efficient
rule scheduling mechanism is quite evident.

So far many rule scheduling mechanisms have been introduced
such as Random (Adaikkalavan and Chakravarthy, 2012), FCFS (First
Come, First Served) (Sarkar and Debnath, 2012), and Ex-SJF
(Extended Shortest Job First) (Rasoolzadegan et al., 2008), pre-
sented in Section 3. There are also some criteria for evaluating the
effectiveness (performance) and efficiency of rule scheduling
approaches such as Average Response Time, Throughput, and
CPU Utilization, presented in Section 2.

The scheduling of active rules is one of the main research topics in
ADSs (Rasoolzadegan, 2007; Ceri et al., 2003; Jin, 2009; Jin et al., 2007;
Meenakshi and Thiagarasu, 2014; Meenakshi and Thiagarasu, 2014;
Saravanapandi Solairajan et al., 2013; Narang et al., 2013). There have
been several attempts in this area. The focus is mainly on the
unconstrained rule scheduling approaches - such as the various
versions of Ex-SJF - rather than on those introduced for constrained
rule scheduling approaches - such as the “Static Priority” approach.
Constrained rule scheduling approaches are used when rules have
some restrictions (or constraints) such as deadlines or priorities. For
example, in safety-critical and high-integrity systems – such as the
automatic control system of an airplane – priorities are assigned to rules
according to their importance. Among all activated or ready-to-be-
executed rules, the rule that has the highest priority is selected to be
evaluated or executed first. The priority of rules is determined by rule
developers before the running of the system. In real-time systems, each
rule has its own deadline. Therefore, initially, it is necessary to define
the deadline of each rule accurately. The deadline of a rule is the
greatest amount of time that the execution of the action section of the

A. Rasoolzadegan et al. / Engineering Applications of Artificial Intelligence 39 (2015) 55–7956



Download English Version:

https://daneshyari.com/en/article/380406

Download Persian Version:

https://daneshyari.com/article/380406

Daneshyari.com

https://daneshyari.com/en/article/380406
https://daneshyari.com/article/380406
https://daneshyari.com

