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a b s t r a c t

Multi-agent learning, in a decision theoretic sense, may run into deficiencies if a single Markov decision
process (MDP) is used to model agent behaviour. This paper discusses an approach to overcoming such
deficiencies by considering a multi-agent learning problem as a concurrence between individual
learning and task allocation MDPs. This approach, called Concurrent MDP (CMDP), is contrasted with
other MDP models, including decentralized MDP. The individual MDP problem is solved by a Q-Learning
algorithm, guaranteed to settle on a locally optimal reward maximization policy. For the task allocation
MDP, several different concurrent individual and social learning solutions are considered. Through a
heterogeneous team foraging case study, it is shown that the CMDP-based learning mechanisms reduce
both simulation time and total agent learning effort.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For multi-agent robot teams to become a more common fixture
in private and public industries, they must exhibit compliant
individual and social learning behaviours. A multi-agent learning
problem is commonly approached in the literature from either an
individual or team perspective. To enhance the performance of a
multi-agent team attempting a complex task in a realistic envir-
onment, there needs to be a concurrent approach toward three
layers of team learning, i.e., collective, cooperative, and collaborative
(Parker, 2012). Indeed, the operation of separate learning mechan-
isms at the three interdependent learning levels can be challen-
ging both analytically and heuristically.

To form a multi-layered learning approach, each layer of team
learning may be characterized by a specific learning problem:
collectivism by individual performance, cooperation by task allo-
cation, and collaboration by advice sharing. Afterward, these
learning problems and their interrelationships may be considered
analytically and solved by an appropriate learning mechanism. In
this paper, Markov decision processes (MDPs) are used as learning
problem models, and several concurrent individual and social
learning approaches are utilized to discover locally optimal beha-
viours, which are demonstrated in a heterogeneous team foraging
scenario. These approaches are contrasted with a decentralized
policy improvement approach as a control (Bernstein et al., 2002).

The paper first discusses the domain of multi-agent learning
with a focus on Markov decision processes, investigating how
analytical models of team behaviour can be applied to team
scenarios. Decision Theory, sometimes characterized as an analy-
tical discipline of Computer Science, has broad applications to many
disciplines including Robotics (Beynier and Mouaddib, 2012). A new
method of learning problem formulation is then formalized; instead
of modelling a learning problem as a single centralized or decen-
tralized MDP, and designing analytical expressions in a holistic
manner, we deconstruct a large MDP into a set of dissimilar
dependent MDPs, which we denote as a Concurrent MDP (CMDP).

In Section 2, the current decision theoretic paradigm is criti-
cally compared with the needs of an empirical robotics scenario. In
Section 3, the concurrent individual and social learning (CISL)
problem model is defined in relation to the MDP paradigms.
Section 4 details a heterogeneous robot team foraging case study.
Section 5 discusses the performance of various CISL algorithms vs.
that of a decentralized policy improvement approach. Some
concluding remarks are made in Section 6.

2. Background

In this research only Fully Observable MDPs (FOMDPs) are
referenced, with S;A; T ;R

� �
tuples where S denotes a finite set of

discrete states, s; A denotes a set of finite actions, a; Tðs; a; s0Þ
represents a true transitional probability between states; and
Rðs; a; s0Þ denotes a reward function. When solving for an optimal
policy, an infinite time horizon and a discounted reward setting
are assumed. In some cases other MDP definitions will be noted
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specifically. We will restrict our attention to multi-agent planning
problems, where all agents collectively seek a uniform outcome
(Boutlier, 2000).

In a direct sense, the simplest solution to such a planning
problem is to include all relevant state information into a FOMDP,
treating it as a multi-agent Markov decision process (MMDP); each
agent can be given complete knowledge of the entire system as well
as all other agents’ utility functions (Boutlier, 2000). Locally optimal
behavioural policies can be found using any reinforcement learning
method. The MMDP modelling approach is attractive because issues
related to competition, timing, and scheduling are not present, as
there is one ideal utility function across all agents and all agents
regress to it together. These problems are P-complete (Mundhenk et
al., 2000) or PSPACE-complete (Papadimitriou and Tsitsiklis, 1987),
and can be approached in polynomial time.

Two major issues exist with the aforementioned centralized
approach. First, the state space size for real-world problems can be
prohibitively large; hundreds of dimensions can easily exist,
leading to problems of sparsity, interdependence, and computa-
tion. Second, a single robot is unlikely to know the positions,
utility functions, and future decisions of an entire robot team with
much certainty. To deal with these major multi-agent issues a few
approaches have been taken.

2.1. Decentralized representations

It has been shown that game theoretic worst-case estimates can
be applied to multi-agent teams, in a partially or completely obser-
vable sense, by considering systems as decentralized (Bernstein et al.,
2002). Decentralized MDP (DEC-MDP) modelling approaches forma-
lize the multi-agent model by adding a set of agents, actions per agent
and observations per agent to the MDP definition. In a finite-horizon
sense, worst-case computation to solve such problems has been
readily shown to be super-exponential in computation time and
NEXP-Hard (Bernstein et al., 2002).

Some attempts have been made to solve these intractable
problems in an approximate sense. If it is assumed that all the
agents are completely independent, such that they do not affect
each other or each other’s observations, then a factored represen-
tation of the DEC-MDP can be solved (Becker et al., 2004). The
anytime implementation of this model, an algorithm that is
interruptible, is intractable for large problems, even if typical
simulations land it roughly within 90% of the value earned by an
optimal policy. Recent approaches, while encouraging in the
amount of agents simulated, still only approach simple games,
and lack the complexities of realistic simulations (Pajarinen and
Peltonen, 2011).

Albeit a complete and accurate model of a multi-agent system,
the DEC-MDP model is one of the hardest models in terms of
complexity, as it is NEXP-Hard. Thus, it lacks strong real-time
algorithms for agents with limited memory and computational
resources.

2.2. Partial state representations

To directly convert an MMDP or DEC-MDP problem into a more
tractable one, a partial subset of the full state can be represented.
For example, it may be determined that some state information is
irrelevant for each individual agent, or that a certain subset of this
state information is unstable or unavailable. In this case, it may be
desired to prune the state representation to a more reasonable size.
Approaches range from learned pruning, such as principal compo-
nent analysis (PCA) (Billon et al., 2008; Tamimi and Zell, 2004) or
clustering (Jin et al., 2009), to any arbitrary information excluded by
the designer of a state space. This reduces the potential state space
required for the agent to explore, and therefore lessens the

computational burden across all agents. Much research is focused
on state representation as an aid to machine learning, to speed
convergence to an optimal policy. In the case of learned pruning,
such as PCA or clustering, a reduction of state space may also result
in noise reduction and performance improvement.

Another approach is to compress the state representation using
various methods without loss of information. For example, a
learned factor representation (Boutlier, 2000) can lead to less
memory usage, even if theoretical worst-case performance is
equal to the full state space; the agents learn which state variables
are dependent through experience. Conversely to discovering and
modelling many dependencies between states, many state vari-
ables can be assumed to be independent. This leads to exponen-
tially less memory usage. In both of these schemes no information
loss takes place in terms of raw state data, but the predictive
power of the utility functions can decrease due to misrepresenta-
tion of variable independence.

Lastly, it may be desired to limit the MDP to some local scope
that is directly observable by an agent, or smaller, using an ad hoc
method. In these cases a designer can take an MDP of extremely
high dimension and convert it to an MDP of lower dimension; an
intractable problem can be formulated as a weaker, inaccurate, and
tractable model. A typical state vector in this case may include
communications from other agents, sensor readings, and a variety of
internal metrics. For robotics, such a step is a general requirement.

2.3. Concurrent MDP representations

A last approach, and the primary contribution of this paper, is a
method of converting an intractable multi-agent MDP problem into
separate dependent MDPs. Groups of behaviours can be addressed
separately, with the main benefit being a reduction in action and
state space. In fact, the nature of policies derived in a concurrent
MDP setting do not need to be of the same class or rigor, allowing the
designer more freedom when compared with previous approaches.
This novel approach, while empirically common, is rarely formalized
or analytically explored. We define this approach as the Concurrent
MDP (CMDP) approach, and analytically describe its application to
simulation. As a result, the concurrent and individual and social
learning (CISL) approach addresses multi-agent learning by solving
two independent classes of MDP problems concurrently (Ng and
Emami, 2013, 2014). First, a limited scope individual performance
MDP is solved. Second, a task allocation MDP is solved. Both of these
MDPs are compact and of low quality relative to a corresponding
decentralized MDP.

For the CISL approach, the individual MDP is seen as indepen-
dent of other non-cooperating agents—pairwise agent interactions
are considered as unmodeled noise. The task allocation MDP is
then developed to characterize the process of assigning tasks to
agents, such that the reward obtained by the team of agents is a
random process, which reflects team performance toward a team
objective.

Similar approaches include small heuristics, such as Q-Learning
with search, where the individual learning is augmented with a
communication layer that raises the probability of discovering a
foraging target (Hayat and Niazi, 2005), to full heuristic frame-
works such as Alliance. The Alliance framework (Parker, 2001)
uses a sub mechanism, called L-Alliance (Parker, 1998), to divide a
foraging problem into an individual learning problem and separate
task allocation problem in a heuristic fashion. None of these
approaches are proven analytically to minimize or maximize task
allocation behaviours, rather they empirically improve team per-
formance. In general, many multi-agent learning techniques lack
rigorous analytical treatment.

In this research we will focus on the CISL approach, which is
one example of a possible CMDP representation. We will also show
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