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This paper aims at designing a diagnosis tool to support experts for detecting and localizing faults in a
network of rain gauges. This problem is presented in the context of human-machine cooperation. In this
problem, it is impossible to model completely the whole expert knowledge about misbehavior.
Diagnostic becomes a process where only a part of the expert knowledge is formalized, the remaining
is kept implicit and is exploited gradually during the diagnostic process thanks to interactions with
experts. At each step, the proposed diagnosis tool supports the expert by presenting selected data to be
analyzed, i.e. rainfall hyetographs for a cluster of rain gauges for which the expert has to identify possible
discrepancies. A fuzzy logic based diagnostic reasoning is then used because it proves to be more
relevant to express the expert conclusions, which may be dubious. The way of handling such diagnosis
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processes is presented in this paper.
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1. Introduction

Performing diagnoses rely on a complex process, which can be
decomposed into a design process followed by a running process.
The following design tasks may be distinguished: system model-
ing, sensor placement, detection test design and isolation algo-
rithm design.

The system modeling task aims at formalizing the reference
behaviors. Generally speaking, reference behaviors may be mod-
eled by constraints establishing links between data coming from
observations and unknown variables. Each constraint models one
or several behavioral modes. In Al community, a system modeling
task is detailed in Reiter (1987), De Kleer and Williams (1992),
Struss (1992), and Chittaro and Ranon (2004). Each element of a
system may behave according to some modes. The ok mode,
denoted ok(component) in De Kleer and Williams (1992), stands
for the normal expected behavior of a component. Constraints may
model faulty behaviors like leak(pipe). Finally, the complementary
fault mode cfm(component) gathers all the behaviors that are not
related to ok mode and to modeled fault modes. It is named
unknown fault mode in De Kleer and Williams (1992) and Struss
(1992). The modeling task consists in formalizing the constraints
modeling the different modes of the system to be diagnosed.
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The detection test design task is usually not explicit in Al
approaches: consistency tests are usually done directly in checking
the consistency between the constraints and the data. However,
results coming from FDI community (Patton et al., 2000; Blanke
et al., 2006) point out that for many systems, a detection test may
not be given from a simple consistency test between the elements
of the system description and observations. Therefore, works
gathering researchers from FDI and Al appeared with the aim of
making a bridge between FDI and Al results (Cordier et al., 2000;
Nyberg and Krysander, 2003; Ploix et al., 2003). As a result,
detection test design tasks can be decomposed into the two
following sub-tasks: testable subsystem generation, which con-
sists in selecting subsets of constraints that may lead to detection
tests (Blanke et al., 2006; Krysander et al., 2005; Ploix et al., 2005),
and detection algorithm design that consists in designing a
detection test, often named Analytical Redundancy Relation,
corresponding to each testable subset of constraints.

The isolation algorithm design task consists in selecting the
most relevant diagnostic analysis approach. Different kinds of
approaches may be used to analyze the symptoms provided by
detection tests: decision tree based approach (Quinlan, 1986;
Nakasuka and Koishi, 1995; Pomorski and Perche, 2001), case
based reasoning approach (Xia and Rao, 1999; Goker et al., 2005)
or the signature based approach (Patton et al., 2000; Blanke et al.,
2006). In this paper, the bridge approach is considered (Nyberg
and Krysander, 2003; Ploix et al., 2003). It has been shown that
consistency based reasoning can be used to analyze symptoms
coming from detection tests depicted by the involved modes.
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Fig. 1. Interactive diagnosis process.

Another task may be mentioned: the sensor placement. It
consists in defining where to place sensors in order to satisfy
diagnosability, discriminability and detectability properties
(Yassine et al., 2008; Frisk and Krysander, 2007).

The running process is closely related to the design task:
symptom generation, diagnostic analysis and possibly backward
analysis. In scientific literature, most of the contributions aim at
automating the running process assuming that models can be
completely established before the diagnosis analysis. But Ploix and
Chazot (2006) point out that, in many practical contexts, this
prerequisite cannot be satisfied. Consequently, new problems arise
because:

® the system is too complex to carry out detailed modeling of the
whole system;
® some knowledge cannot be easily formalized.

In order to tackle these difficulties, interactions between experts
and computer-aided diagnosis systems are obviously needed during
the running process, and also in the modeling task. This paper
focuses on the diagnosis problem with human-machine interac-
tions in the diagnostic analysis phase to exploit the implicit
expertise. The diagnostic process is illustrated in Fig. 1. (1) repre-
sents the human-machine interactions in the diagnosis phase.
The interaction (2), called retro-analysis, will also be discussed in
this work.

Some expert knowledge can be formalized as reference models
and detection tests but some other knowledge is difficult to
formalize and should rather remain implicit for the expert. The
main idea is to gradually present data to the expert during the
diagnosis process in order that he can analyze data based on his
tacit knowledge. Hence, the problematic is: what should be
presented to the expert at each interaction?

This problem has been studied in the project Hydrodiag in
collaboration with Christian Depraetere, a researcher at the
Institute of Development Research. The objective is to diagnose
faults on a network of rain gauges. The tools used to solve the
problem will be detailed later. Let summarize the main solving
steps that lead to the considered problem. The first step aims at
designing the detection tests. A set of detection tests is generated:
they are based on correlations between quantities of water
received from rain gauges. It contains the expert explicit knowl-
edge. Multiple faults may occur in this problem. In order to tackle
this difficulty, the Hitting-Set Tree algorithm (HS-Tree) (Reiter,
1987) has been used.

From the diagnosis framework based on the crisp logic, the
results of fuzzy logic have been integrated in the diagnostic analysis
(Touaf and Ploix, 2004b) that allows to avoid false alarms on the
one hand and to minimize non-detections on the other hand.

Next, in many cases, a numerous set of diagnostic assumptions
may be given by the algorithm, and it is difficult for an operator to
use them. For example, in the Hydrodiag problem, 16 different
diagnoses can be found with 5 or 6 simultaneous faults for each
diagnosis. Since it is not reasonable to present all the computed
diagnostics, human-machine interactions appear necessary in this

case to locate faults without upsetting the expert with a large set
of assumptions that he is not able to analyze. For this reason, a
solution is proposed to guide the expert to establish a diagnostic.
The idea is that only a part of the expert's knowledge can be
formalized by detection tests automatically generated from system
behavioral models. On the one hand, there is a tool-aided
diagnosis with mathematical models and reasoning tools that
can tackle complexity without difficulty, and on the other hand,
an expert with complementary tacit knowledge that makes it
possible to determine whether a sensor is faulty or not by looking
at its rain hyetograph and those of its neighbors. It cannot be
detected automatically by a diagnosis system.

The paper is organized as follows: the diagnosis problem for a
network of rain gauges is stated and a framework fault detection
and diagnosis based on crisp logic is presented in Section 2.
Section 3 shows how to integrate fuzzy diagnostic reasoning to
avoid false alarms and to minimize non-detections. Then, an
interactive diagnosis matrix is presented in Section 4: it proposes
a solution to guide the expert during the interactive diagnosis
process. This interactive diagnosis matrix allows better exploita-
tion of the implicit expert knowledge.

2. Problem statement and crisp logic reasoning

The diagnosis problem for a network of rain gauges is stated in
this section.

2.1. Problem under study

The purpose is to set up a computer-aided diagnosis process to
determine the faults in a network of rain gauge sensors set up in
the Upper Oueme Valley in Benin, with an area of 47 536 km?. 46
bucket rain gauges, that switch whenever 5 mm of water is
received, are available. Their latitude and longitude coordinates
are known. The objective is to diagnose the faults of the rain gauges.

2.2. Design of detection tests

The first task (task I in Fig. 1) of a diagnostic process is generally
the design of detection tests. The main idea for testing the rain
gauges is to compare data from two nearby sensors. Therefore,
each consistency test is built by a couple of sensors (rain gauges).
Each couple of sensors can be tested by using the average
correlation level (residues value) within each month, provided
that the distance between two sensors is less than 10 km." This
value has been obtained thanks to experience feedback. If a bigger
distance is chosen, the interpretation of the generated residues
becomes risky because sensors are no longer sufficiently corre-
lated. Conversely, if a smaller value is chosen, many useful
correlated test may be lost.

Because of the low density of the sensor network, only 25 out
of 46 rain gauges can be tested. These 25 sensors yield 44 tests
involving 2 sensors each, as shown in Table 1. Each test is
represented by a segment in Fig. 2.

2.3. Symptom generation

The second task (task II in Fig. 1) of a diagnostic process is
the symptom generation. Symptoms are generated thanks to a
threshold of residuals (also called decision threshold).

! Hydrologists estimate that, for the considered problem of rainfall, if the
distance between two sensors is more than 10 km, the rainfall amounts received by
these two sensors are independent (Depraetere et al., 2009).
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