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a b s t r a c t

In case-based design systems, the adaptation operation based on similar cases is a difficult and complex step,
and the more adaptable cases usually could make larger contribution for adaptation generation than less ones.
Under this ideology, this paper addresses a new case adaptation method which uses support vector machine
(SVM) incorporating adaptability-related knowledge provided by the retrieved cases, called adaptability-
involving SVM (ASVM). The knowledge of adaptability includes the adaptability characteristic of old cases
returned by the adaptability analysis and the guideline that the training data from adaptable case should be
given higher weight to build SVMmodel. So the content of this work presented here consists of two parts. The
first one is to explore the adaptable property of old cases by utilizing decision tree technology. The second one
is to study the construction of ASVM adaptation model in terms of retrieved cases. We first employ the
differences between test and retrieved cases to assemble the adaptation pattern data for ASVMmodel training.
Then the higher adaptability coefficients are given to the training data from more adaptable cases than those
from less adaptable cases. We adopt ASVM in actual power transformer design to illustrate its feasibility,
and carry out comparison researches with different numbers of retrieved cases in the different data sets to
validate its superiority, through comparing the adaptation error results with those provided by other
classical methods. Empirical results show that ASVM is feasible and validated for case adaptation.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays rapid product development requires methodologies
to efficiently explore the design space to build products with
reduced costs, improved functionality and quality to compete in
global markets. At present, design task has had an enormous
improvement thanks to new computer aided methods, among
which the most widely used strategies for rapid product develop-
ment is parametric design (Gane and Haymaker, 2012) which has
been known to reduce design time with minimal expense. Tradi-
tionally, the parametric values of new product are determined by
decision-maker based on his/her expertise and experiences. To
improve such qualitative method, the case-based reasoning (CBR)
technique has been introduced to design product, i.e., case-based
design (CBD). By its nature, the case is deemed to be a represen-
tative sample of problem-solving in this domain, and CBD system
is a knowledge-based system which solves new design problems
by matching the problem feature-values and adapting the solution
feature-values of similar old cases (Qi et al., 2012). However, existing

commercial CBD systems are generally characterized by a sophisti-
cated case organization and retrieval mechanism, but do not include
a well developed case adaptation framework (Finnie and Sun, 2003).
This is due to the fact that case adaptation generally needs to be
guided by some organized form of domain knowledge, while
adaptation knowledge is not always accessible and available.

Early studies employed hand coded adaptation rules for case
adaptation, which demand a significant knowledge acquisition
effort for case adaptation (Smyth and Keane, 1996). Later, different
from manually acquiring adaptation knowledge, several machine
learning (ML) methods are applied to perform automatic case
adaptation. Recently, support vector machine (SVM), a new way to
train polynomial neural networks (NNs) based on the structural
risk minimization principle, has been successfully proved to be
superior to classical NNs in solving classification and regression
problems (Sakr and Elhajj, 2013; Zhang et al., 2013; Gryllias and
Antoniadis, 2012; Chuang and Lee, 2011). In general, SVM for
regression problem uses some arbitrarily chosen loss functions
which equally penalize errors on all training samples, therefore all
training examples are considered equally significant. On the other
hand, recent papers (Chebel-Morello et al., 2013; Nouaouria and
Boukadoum, 2013; Qi et al., 2012; Stéphane et al., 2010) have
confirmed that more adaptable case could provide more important
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information than those from less adaptable cases for adaptation
generation. Therefore, it is advantageous to give high weights on
the training data provided by adaptable case to build SVM model.

Inspired by this idea, this paper concentrates on the numerical
parameterized adaptation, and proposes a new adaptation method in
CBD system. The proposed approach is an improvement of classical
SVM-based adaptation, which is the first attempt to integrate SVM
model with adaptability-related knowledge from case-base, and
provide empirical evidences to prove its validity. The breakdown of
this research is divided into six sections. Section 2 is a description on
research background. Section 3 builds up the new adaptation frame-
work. Section 4 gives an example to illustrate the procedure of the
proposed method. An empirical experiment is provided to make a
comparative analysis in Section 5. Section 6 makes conclusions.

2. Research background

2.1. Knowledge-light case adaptation

To overcome the challenge of acquiring sufficient programmable
knowledge for case adaptation, the concept of “knowledge-light”
adaptation has been proposed (Mitra and Basak, 2005), which aims
to reduce the engineering effort needed for the acquisition and
organization of adaptation knowledge by employing the knowledge
already contained inside the CBR system and its components. Early
studies of knowledge-light adaptation acquired the adaptation rules
by analyzing the differences between cases and their corresponding
solutions, and identifying, if possible, a plausible pattern (Jarmulak
et al., 2001). Later, some researchers combined ML methods into CBR
to obtain adaptation knowledge. The design of these ML-based
knowledge-light algorithms is ideally independent of the domain
knowledge, or very little domain knowledge is required for making
the adaptation methods. Among them, genetic algorithm (GA) based
adaptation (Huang et al., 2009; Saridakis and Dentsoras, 2007;
Renner and Ekárt, 2003) and neuro-adaptation (Henriet et al.,
2014; Butdee, 2012; Jung et al., 2009; Craw et al., 2006; Lofty and
Mohamed, 2003) are two typical knowledge-light methods, where
the definition of GA and NN can be guided by the domain knowl-
edge, but the evolution of GA or modelization of NN are not
necessarily guided by domain knowledge. Overall, these investiga-
tions explore the utilization of inductive learning to acquire adapta-
tion knowledge from examples and apply the acquired knowledge to
implement automatic case adaptation. However, such methods have
some inherent drawbacks, e.g., the poor performance for high
number of attributes, the problem of multiple local convergence,
and the danger of overfitting. There are two solutions to overcome
these shortcomings, in general, one is to improve the traditional
approaches such as improved GA (Liao et al., 2012), the other is to
construct a new adaptation model in terms of new algorithm such as
SVM (Sharifi et al., 2013; Policastro et al., 2008). Compared to other
MLs, SVM could achieve an optimum network structure, and
eventually result in better generalization performance for data set
with a large number of attributes, as it implements the structural risk
minimization principle and tries to minimize an upper bound of
generalization error instead of minimizing the misclassification error
or deviation from correct solution of the training data (Tay and Cao,
2001). In addition, the solution of SVM may be a global optimum
while other ML models may tend to fall into a local optimal solution,
so overfitting is unlikely to occur with SVM.

However, Passone et al. (2006) pointed out that insufficient
knowledge can badly affect the selection of an appropriate learning
algorithm and its performance. To overcome the shortcoming, some
researchers proposed new knowledge-light methods which not only
get knowledge from the CBR system itself, but also regard that
knowledge as the starting point for adaptation processes, and find

new knowledge through other ML methods (Minor et al., 2014;
Assali et al., 2013; Goh and Chua, 2010).

2.2. Classical support vector machine for case adaptation

According to the study of Policastro et al. (2008), the training data
of SVM for case adaptation should be represented as xi; yi

� �n
i ¼ 1,

where xi is a 2pþ1-dimensional input vector of ith training example,
including p problem values of retrieved case, p problem values of
target case, and one solution value of retrieved case, yi is the
corresponding solution value stored in target case, and n is the total
number of training examples. The basic idea of SVM for adaptation is
to do regression approximation which addresses the problem of
estimating a function to model the associative relations between xi
and yi. SVM approximates the unknown function with the form
f ðxÞ ¼ωTφðxÞþβ, where φðxÞ� �n

i ¼ 1 is the high dimensional feature
space, nonlinearly mapped from the input space. ωf gni ¼ 1 and β are
the normal vector and the bias, estimated by minimizing:

R ωð Þ ¼ C
1
n

∑
n

i ¼ 1
Lε yi; f xið Þ� �þ1

2
‖ω‖2 ð1Þ

Lε yi; f xið Þ� �¼ yi� f xið Þ
�� ���ε if yi� f xið Þ

�� ��Zε
0 otherwise

(
ð2Þ

where Cð1=nÞΣn
i ¼ 1Lε yi; f xið Þ� �

is the empirical error (risk) between
expected solution value yi and calculated output f(xi), measured by
the ε-insensitive loss function given by Eq. (2). This loss function
allows us to use sparse data points to represent the function f(x). The
second term 1=2jjωjj2 is the regularization term. C is referred to as
the regularized constant which determines the trade-off between
the empirical error and the regularization term. ε is the tube size and
it is equivalent to the approximation accuracy placed on the training
data. Both C and ε are user-prescribed parameters and are selected
empirically.

To obtain the estimations of ω and β, Eq. (1) is transformed to
the primal function given by Eq. (3) by introducing positive slack
variables ξi and ξni as follows:

Minimize R ω; ξ; ξn
� �

¼ 1
2
jjωjj2þC ∑

n

i ¼ 1
ξiþξni
� �

s:t:

yi� ωTφ xið Þþβ
� �

rεþξi
ωTφ xið Þþβ
� ��yirεþξni
ξi; ξ

n

i Z0; i¼ 1;2;…;n

8>><
>>: ð3Þ

Although non-linear function φ is usually unknown, all com-
putation related to φ can be reduced to the form φ(x)Tφ(y), which
can be replaced with so-called kernel function K(x,y) that satisfies
Mercer's condition. Finally, the function f(x) takes the following
explicit form:

f ðx; δi; δn

i Þ ¼ ∑
n

i ¼ 1
δi�δn

i

� �
K x; xið Þþβ ð4Þ

where Lagrange multipliers δi and δn

i satisfy the equality
δiδ

n

i ¼ 0; δiZ0; δn

i Z0, and they are obtained by maximizing
the dual form of Eq. (3) which has the following form:

R ξ; ξn
� �

¼ ∑
n

i ¼ 1
yi ξi�ξni
� �

�ε ∑
n

i ¼ 1
ξiþξni
� �

�1
2

∑
n

i ¼ 1
∑
n

j ¼ 1
ξi�ξni
� �

ξj�ξnj
� �

K xi; xj
� �

ð5Þ
with the following constraints:

∑
n

i ¼ 1
δi�δn

i

� �¼ 0; 0rδirC; 0rδn

i rC; i¼ 1;2;…;n ð6Þ

Based on the Karush–Kuhn–Tucker conditions of the quadratic
programming, only a number of δi�δn

i

� �
will assume non-zero

values, and the input element associated with them could be
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