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a b s t r a c t

For modeling of multivariate time series, input variable selection is a key problem. This paper presents
the estimation of joint mutual information and its application in input variable selection problems.
Mutual information is a commonly used measure for variable selection. To improve the performance of
input variable selection, we propose a novel high-dimensional mutual information estimator based on
copula entropy, which is estimated by the truncated k-nearest neighbor method. Simulations on high
dimensional Gaussian distributions substantiate the effectiveness of the proposed mutual information
estimator. A relationship between the joint mutual information and the copula entropy is derived, which
is used for joint mutual information estimation. Then the proposed estimator is applied to input variable
selection for multivariate time series modeling based on the criterion of max dependency and max–min
dependency. A stop criterion is proposed to terminate the selection process automatically. Simulation
results show that the input variable selection method works well on both synthetic and real life dataset.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multivariate time series contains two-dimensional or more vari-
ables, which are arranged according to a uniform time interval. There
are a wide variety of multivariate time series data in the real world,
such as in meteorology (Wu and Chau, 2013), hydrology (Grbić et al.,
2013), economics (Keynia, 2012), biomedicine (Han and Liu, 2013) and
many other fields. Compared to univariate time series, multivariate
time series contains more abundant information of the complex
dynamic system. It has been proved that the prediction model with
multivariate time series can achieve higher accuracy than those with
univariate time series (Du Preez and Witt, 2003). Therefore, modeling
of multivariate time series receives more and more attention.

With the development of data acquisition and storage technology,
there are a large number of high-dimensional data. As the dimen-
sionality of input variable increases, irrelevant and redundant vari-
ables appear which would make it difficult to model multivariate
time series. To avoid the curse of dimensionality, dimensionality
reduction approaches are necessary (Fu, 2011). Feature extraction
and variable selection are two types of commonly used methods.
Feature extraction methods reduce dimensionality by mapping or
transformation, such as singular value decomposition and principal
component analysis (Han and Wang, 2009). However, the new

variables obtained by feature extraction methods often lose physical
properties of the original variables. In time series analysis, variable
selection is more competitive than feature extraction. Variable
selection methods (Guyon and Elisseeff, 2003) select the compact
subset from the original dataset to improve the performance and
interpretability of the prediction model. In this paper, we focus on
variable selection methods based on mutual information for multi-
variate time series modeling.

Mutual information (MI) is one of the most important concepts in
the field of information theory. As MI can measure both the linear
and nonlinear dependency between variables, it has been applied
widely in correlation measurement and variable selection (Wang
et al., 2010; Lee and Kim, 2013). The basic idea of variable selection
algorithm based on MI is to select the best subset S from the original
dataset F by maximizing the joint MI between S and target output Y,
namely IðS;YÞ (Vergara and Estévez, 2014). The main challenge that
limits applications of the above method is to estimate MI between
high-dimensional variables. To avoid estimating the joint MI, there
are many MI-based variable selection algorithms that use low-
dimensional approximation and the heuristic search method, such
as mutual information feature selection (MIFS) (Battiti, 1994), mutual
information feature selection under uniform information distribution
(MIFS-U) (Kwak and Choi, 2002), minimal redundancy maximal
relevance (mRMR) (Peng et al., 2005), normalized mutual informa-
tion feature selection (NMIFS) (Estévez et al., 2009), etc. For most
existing variable selection methods based on MI, the major short-
coming is that the candidate variable is selected one by one through
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evaluating pairwise MI which easily leads to suboptimal results
(Chow and Huang, 2005). Moreover, it has been shown that it is
infeasible to approximate the high-dimensional MI with algebraic
combinations of pairwise MI in any forms (Zheng and Kwoh, 2011).
Therefore, we consider a direct estimation of joint MI to measure the
dependency between candidate subsets and target output.

The accuracy of MI estimation is always limited by the estimation
of the joint probability density function, thus influencing the
identification of the dependency between variables. For now, much
research about MI estimation has been done (Walters-Williams and
Li, 2009). MI can be calculated by entropy, probability density or
Kullback–Leibler divergence. They can also be classified as parametric
methods and nonparametric methods. Parametric methods include
maximum likelihood (ML) estimator, Bayesian estimator, and Edge-
worth estimator (EDGE). Nonparametric methods include the histo-
gram based method, kernel density estimator (KDE), the k-nearest
neighbor (k-NN) method, the entropic spanning graph method, etc.
Parametric methods assume that the data come from a type of
probability distribution and make inferences about the parameters of
the distribution. Unlike parametric methods, nonparametric methods
make no assumptions about the probability distributions of the data,
which is more flexible and convenient for applications (Ethem
Alpaydin, 2004).

Maximum likelihood is a parametric technique (Suzuki et al.,
2008). It is applicable only if the distribution of data is known. ML is
prone to over fitting when the size of the dataset is not large enough
compared to the degrees of freedom in the chosen model. This
problem can be fixed by the Bayesian method, for the reason that
the Bayesian method deals with how to determine the best number of
model parameters (Endres and Foldiak, 2005). Therefore, the Bayesian
method is very useful when large data sets are hard to obtain. When
the underlying distribution of data set is close to normal distribution,
EDGE is quite accurate and works well (Van Hulle, 2005). However,
when the distribution is far from normal, the approximation error gets
large and EDGE becomes unreliable.

The histogram based method (Hacine-Gharbi et al., 2012) and
kernel density estimator are the two principal differentiable
estimators of MI. There are mainly two types of histogram based
estimators, namely equidistant and equiprobable. The equiprob-
able histogram based estimator is more accurate than the equidi-
stant one. KDEs are more accurate than histogram based methods,
but they are more time-consuming. For example, the Parzen
window method (Kwak and Choi, 2002) has a quadratic complex-
ity with respect to the number of dimensionality. Compared with
histogram based methods and kernel density estimators, k-NN is a
better choice as fine partitions capture the fine structure of chaotic
data and it is not significantly corrupted with noise. But the
estimation accuracy depends on the value of k and there seems
no systematic strategy to choose the value of k appropriately
(Kraskov et al., 2004). Entropic spanning graph is a “non plug-in”
method as it estimates entropy directly from the sample set. The
entropy estimator based on entropic graph has a linear complexity
with variable dimensionality and has OðN log NÞ complexity for
constructing an entropic spanning graph over N training samples
(Balagani and Phoha, 2010). So it is not bounded by the curse of
dimensionality. However, it cannot estimate Shannon entropy
directly. Different parameters α must be used so that the Shannon
entropy can be extrapolated with the α-entropy.

Above all, every MI estimator has its advantages and scope of
applications. In this paper, we propose a new MI estimator based on
copula entropy to avoid the estimation of both the marginal and joint
probability density functions. And truncating k-NN is used to estimate
the copula entropy on the basis of a group of pseudo-observations
calculated from the given samples. Then, the proposed MI estimator is
applied to input variable selection based on MD and MmD criterion.
The rest of the paper is organized as follows. In Section 2, the

background of MI will be introduced and several kinds of k-nearest
neighbor estimators will be discussed and compared in detail.
In Section 3, we will give a detailed presentation for the proposed
MI estimator. And the experimental results are analyzed in Section 4.
Finally, the conclusions are given in Section 5.

2. Background on mutual information

In this section, we briefly review the definition of MI and its
estimation based on k-nearest neighbor method.

2.1. Definition of mutual information

The MI is a commonly used concept in the field of information
theory. To understand the meaning of MI, entropy is an essential
prior knowledge. Shannon's entropy (Shannon, 2001), first intro-
duced in 1948, is a measure of uncertainty of random variables. If X
is a continuous random variable with probability density function
pðxÞ, the entropy of X is defined as

HðXÞ ¼ �
Z

pðxÞlog pðxÞdx ð1Þ

The joint entropy is used to examine the amount of information
among multiple variables. The joint entropy of two continuous
random variables X and Y is as follows:

HðX;YÞ ¼ �∬ pðx; yÞlog pðx; yÞdx dy ð2Þ
where pðx; yÞ is the joint probability density function of X and Y.

For two continuous random variables X and Y, the MI is defined as

IðX;YÞ ¼∬ pðx; yÞlog pðx; yÞ
pðxÞpðyÞ dx dy ð3Þ

where pðxÞ and pðyÞ are the marginal probability density functions of
X and Y respectively. The MI describes the shared information of X
and Y, and can be used to measure the dependency between two
random variables without any prior knowledge. Generally, the
stronger correlation between two random variables is, the larger
MI they will have. A relationship between the MI and the entropy can
be drawn from the above definitions

IðX;YÞ ¼HðXÞþHðYÞ�HðX;YÞ ð4Þ
Extend the MI to more than two continuous random variables
X1;X2;…;Xmf g, and then we can obtain high-dimensional MI with
m variables,

IðX1;X2;…;XmÞ ¼∬⋯
Z

pðx1; x2;…; xmÞlog
pðx1; x2;…; xmÞ

pðx1Þpðx2Þ…pðxmÞ
dx1 dx2⋯dxm

ð5Þ
where pðx1; x2;…; xmÞ is joint probability density function and
pðx1Þ; pðx2Þ;…; pðxmÞ are marginal probability density functions.

The joint MI measures the dependency between multiple
variables X1;X2;…;Xmf g and Y. The joint MI is defined as follows:

IðX1;X2;…;Xm;YÞ ¼∬⋯
Z

pðx1; x2;…; xm; yÞlog
pðx1; x2;…; xm; yÞ
pðx1; x2;…; xmÞpðyÞ

dx1 dx2⋯dxm dy

ð6Þ
Unlike the MI between two random variables, the joint MI not only
concerns the dependency between X1;X2;…;Xmf g and Y, but also
involves the internal correlation of X1;X2;…;Xmf g. Therefore,
the joint MI is highly suited to solve the input variable selection
problems.

2.2. K-nearest neighbor estimation of mutual information

The k-NN method has been widely used in the field of pattern
recognition. As for the estimation of MI, there are three kinds of
k-NN methods at present according to the different ways they are
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