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a b s t r a c t

The concept of opposition-based learning (OBL) was first introduced as a scheme for machine intelligence.
In a very short period of time, some other variants of opposite numbers were proposed and oppositionwas
applied to various research areas. In metaheuristic optimization algorithms, the main idea behind applying
opposite numbers is the simultaneous consideration of a candidate solution and its corresponding
opposite candidate in order to achieve a better approximation for the current solution. This paper proposes
an opposition-based metaheuristic optimization algorithm (OBA) and a new and efficient opposition
named comprehensive opposition (CO) as its main operator. In this paper it is mathematically proven that
CO not only increases the chance of achieving better approximations for the solution but also guarantees
the global convergence of OBA. The efficiency of the proposed method has been compared with some well-
known heuristic search methods. The obtained results confirm the high performance of the proposed
method in solving various function optimizations.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Metaheuristics have been established as one of the most practical
approaches to optimization problems. They have been primarily
designed to address problems that cannot be tackled through tradi-
tional optimization algorithms. Although still there is no guarantee,
metaheuristic methods usually turn out to achieve better results and
better performances in contrast to their classic counterparts. Popular
metaheuristic optimizers include genetic algorithm (Holland, 1992),
particle swarm optimization (Kennedy and Eberhart, 1995), differential
evolution (Storn and Price, 1997), evolution strategies (Rechenberg,
1971), ant colony optimization (Dorigo and Di Caro,1999), gravitational
search algorithm (Rashedi et al., 2009), etc. These algorithms solve
different optimization problems. However, there is no specific algo-
rithm to achieve the best solution for all optimization problems. Some
algorithms give a better solution for some particular problems than
others. Hence, searching for new metaheuristic optimization algo-
rithms is always needed (Wolpert and Macready, 1997).

Recently, results for metaheuristic optimization algorithms have
been reported which indicate that the simultaneous consideration
of randomness and opposition is more advantageous than pure
randomness (Rahnamayan and Tizhoosh, 2008; Rahnamayan et al.,
2012; Ventresca et al, 2010). This new scheme, called opposition-
based learning, has an apparent effect on accelerating metaheuristic
optimization algorithms. The concept of opposition-based learning

(OBL) was firstly introduced by Tizhoosh (Tizhoosh, 2005a). In a
very short period of time, some other variants of opposition-based
learning such as quasi-opposition (QO) (Rahnamayan et al., 2007),
quasi-reflection (QR) (Ergezer et al., 2009) and current optimum
opposition (COOBL) (Xu et al., 2011) were applied to various
research areas. The achieved empirical results confirm that the
concept of opposition is general enough and can be utilized in a
wide range of learning and optimization fields.

OBL was firstly proposed as a machine intelligence scheme for
reinforcement learning (Tizhoosh, 2005a,, 2005b,, 2006). Afterward, it
has been employed to enhance soft computing methods such as fuzzy
systems (Tizhoosh, 2009; Tizhoosh and Sahba, 2009) and artificial
neural networks (Rashid and Baig, 2010; Shokri et al., 2007; Ventresca
and Tizhoosh, 2006; Ventresca and Tizhoosh, 2007a, 2008). OBL has
been proven to be an effective method for solving optimization
problems. It has been shown that in terms of convergence speed,
utilizing OBL is more beneficial than using the pure randomness to
generate initial estimates for a population based metaheuristic opti-
mization algorithm in the absence of a prior knowledge about the
solution of a box-constrained continuous domain optimization pro-
blem (Rahnamayan et al., 2008a, 2012; Ventresca et al., 2010). OBL has
been employed to improve the success rate of various evoluti-
onary algorithms such as differential evolution (Rahnamayan, 2008;
Rahnamayan et al., 2006a, 2006b, 2008b, 2008c, 2008d; Rahnamayan
and Wang, 2008a, 2008b), particle swarm optimization (Chi and Cai,
2010; Han and He, 2007; Jabeen et al., 2009; Omran, 2009; Shahzad et
al., 2009; Tang and Zhao, 2009; Wang et al., 2007), ant colony
optimization (Malisia, 2007, 2008; Malisia and Tizhoosh, 2007),
simulated annealing (Ventresca and Tizhoosh, 2007b), harmony search
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(Mahamed et al., 2011), biogeography-based optimization
(Bhattacharya and Chattopadhyay, 2010) and gravitational search
algorithm (Shaw et al., 2012) in a wide range of fields from image
processing (Khalvati et al., 2007; Rahnamayan and Tizhoosh, 2008) to
system identification (Subudhi and Jena, 2009; Subudhi and Jena,
2011). Enhancing searching or learning in different fields was tried
using all of these algorithms and they were experimentally verified by
benchmark functions. A majority of these algorithms and also other
opposition-based works have been explained in Tizhoosh et al. (2008).
In 2007, QO was proposed by Rahnamayan et al. (Rahnamayan et al.,
2007). It was successfully used in differential evolution (Peng and
Wang, 2010; Rahnamayan et al., 2007), and particle swarm optimi-
zation (Zhang et al., 2009). Since a candidate solution is reflected to
its opposite to accelerate the exploration, Mehmet Ergezer et al.
applied the same logic and reflected the quasi-opposite point to
obtain the QR point (Ergezer et al., 2009). It was applied on
biogeography-based optimization (Ergezer et al., 2009). Recently,
COOBL has been proposed and combined with differential evolution
for function optimization (Xu et al., 2011). The opposite points
created using the current optimum are in the neighborhood of the
best solution that has been found during the process, especially in
later stages.

In this paper, first we introduce two new oppositions named
extended opposition (EO) and reflected extended opposition (REO)
and apply them as well as QO and QR to propose comprehensive
opposition (CO). To increase the probability of achieving better
approximations for the optimal solution while controlling the
diversity of candidate solutions, CO shifts the amount of each
variable xϵ½a; b� to one of its opposite points �xreo; �xqr ; �xqo or �xeo

whose probabilities of being selected are the optimal solution of a
linear parametric programming with parameter t=T where t is the
number of iteration and T is the total number of iterations. Then,
we introduce an optimization algorithm named opposition based
algorithm (OBA) that employs CO as its main operator. We use
probability rules to analyze the effect of CO on the optimization
performance. We also model OBA as a Markov chain and show that
OBA converges asymptotically with probability one to a global
optimum. The most significant advantages of the proposed algo-
rithm are its strong mathematical base and its guaranteed
convergence.

This paper is organized as follows. Section 2 provides a brief review
of opposition and its features and then introduces EO and REO. Finally,
it covers the definitions, theorems, and proofs corresponding to CO.
OBA is described in Section 3. In Section 4, OBA is modeled as a Markov
chain and its global convergence is established. A comparative study is
presented in Section 5. An experimental study is given in Section 6
and the performance of OBA algorithmwill be evaluated on nonlinear
benchmark functions and the results are compared with those of PSO
and GSA. Finally, a conclusion is given in Section 7.

2. Opposition in box-constrained optimization problems

Opposition-based learning is a concept firstly proposed in compu-
tational intelligence (Tizhoosh, 2005a), and has been proven to be an
effective concept to enhance various metaheuristic optimization algo-
rithms. When evaluating a solution X to a given problem, simulta-
neously computing its opposite solution will provide another chance
for finding a candidate solution closer to the global optimum.
Opposition-based learning has different variants employed for solving
box-constrained optimization problems. These variants include oppo-
sition (Tizhoosh, 2005a), quasi-opposition (Rahnamayan et al., 2007),
quasi reflection (Ergezer et al., 2009) and current optimum opposition
(Xu et al., 2011). In this section, first the concepts of these variants are
reviewed and then extended opposition and reflected extended
opposition are introduced. Finally, quasi-opposition, quasi reflection,

extended opposition and reflected extended opposition are applied to
propose comprehensive opposition.

2.1. Opposition

In opposition, the amount of each variable is reflected through
the center of its domain to create its opposite number as defined
below (Tizhoosh, 2005a).

Definition 1. Let Xðx1; x2;…; xdÞ be a point in d-dimensional space,
where x1; x2;…; xd are real numbers and xiA ai; bi

� �
; i¼ 1; ::; d: The

opposite point of X is denoted by �X ð �x1; �x2;…; �xdÞ where
�xi ¼ aiþbi�xi; i¼ 1;…; d:

2.2. Quasi-opposition

Quasi-opposition, defined below, shifts the amount of each
variable to a random point between the center of its domain and
its opposite number (Rahnamayan et al., 2007).

Definition 2. Let Xðx1; x2;…; xdÞ be a point in d-dimensional space,
where x1; x2;…; xd are real numbers and xiA ai; bi

� �
; i¼ 1; ::; d: The

quasi-opposite point of X is denoted by �X
qoð �xqo1 ; �xqo2 ;…; �xqod Þ where

�xqoi ¼ rand ci; �xið Þ, ci ¼ ðaiþbiÞ=2; i¼ 1; :::;d.

2.3. Quasi-reflection

Quasi-reflection, defined below, reflects the amount of each
variable x to a random point between the center of its domain and
x (Ergezer et al., 2009).

Definition 3. Let Xðx1; x2;…; xdÞ be a point in d-dimensional space,
where x1; x2;…; xd are real numbers and xiA ai; bi

� �
; i¼ 1; ::; d: The

quasi-reflected point of X is denoted by �X
qrð �xqr1 ; �xqr2 ;…; �xqrd Þ where

�xqri ¼ rand xi; cið Þ and ci ¼ ðaiþbiÞ=2 for i¼ 1; :::;d.

2.4. Current optimum opposition

The opposite point using the current optimum is in the
neighborhood of the global optimum during the process of
evolution, especially in later stages (Xu et al., 2011).

Definition 4. Let Xðx1; x2;…; xdÞ be a point in d-dimensional

search space, Xbest xbest1 ; xbest2 ;…; xbestd

� �
be the best solution in the

current population, and xi; xbesti A ai; bi
� �

; i¼ 1; ::; d: The current

optimum opposite point of X is denoted by �X
cooð �xcoo1 ; �xcoo2 ;…; �xcood Þ

where �xcooi ¼ 2xbesti �xi, i¼ 1;…; d: Here Xbest is the center of
opposition.

It is possible that the opposite candidate �xcooi ; 1r ird; jumps
out of the box constraint ai; bi

� �
: In this case, the opposite

candidate is assigned to a value as follows:

�xcooi ¼
ai; �xcooi oai
bi; �xcooi 4bi

(
:

2.5. Extended opposition

We introduce extended opposition as follows.

Definition 5. Let Xðx1; x2;…; xdÞ be a point in d-dimensional space,
where x1; x2;…; xd are real numbers and xiA ai; bi

� �
; i¼ 1; ::; d: The

extended opposite point of X is denoted by �X
eoð �xeo1 ; �xeo2 ;…; �xeod Þ
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