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a b s t r a c t

The Ordinary Differential Equations (ODEs) of dynamic models that are used in process monitoring,
control or optimization, are not only functions of time and states, but also of measured variables. So far
two possibilities for the numerical integration of such ODEs were given: (i) a fixed step size integration
schema could be applied, matching the step size to the time instances of the measurements; or (ii) using
an adaptive step size method while interpolating the measurements. While fixed step size methods are
computationally expensive, the repetitive interpolation of measurements for the application of adaptive
step size methods is prone to errors and time prohibitive, especially for great numbers of measured
variables.

In this paper, an adaptive step size numerical integration method is proposed and evaluated for
dynamic neural network/hybrid semi-parametric models. The method evaluates the ODEs only at time
instances at which online measurements are available and adapts the step size according to those time
instances. The numerical solution of the ODEs is provided at time instances which are specified by the
user, i.e. at time instances of offline measured states. The rationale behind the proposed method is
carefully analyzed, and it is demonstrated that its application along with a hybrid model/dynamic neural
network model can result into a significant reduction of number of function evaluations, in the studied
cases about 50%, while adhering user specified error tolerances for the numerical integration. In
addition, the mutual interference between step-size adaption, parameter identification, coping of the
neural network and model performance is studied, a fact that other studies have paid little to no
attention.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the area of chemical and biochemical engineering the list of
quantities that can be measured increased significantly in the last
decade (Schuegerl, 2001). This development gave rise to the applica-
tion of data-driven techniques for process modeling. In particular
Neural Networks (NNs) have found wide application, since they can
easily be applied for fast nonlinear process model development. Most
(bio)chemical processes are dynamic, wherefore the standard, rather
static, concept of NNs has been extended in many different ways
in order to yield a dynamic model (Sinha et al., 2000). One peculiar
way is modeling the time varying functions of Ordinary Differential
Equations (ODEs) by NNs, resulting in dynamic neural networks
(DNN) (Petre et al., 2010). This approach preserves some structural
resemblance to the modeling of dynamic systems by first-principles,

i.e. a set of ODEs. To an even bigger extend hybrid semi-parametric
modeling exploits the available first-principles knowledge, repre-
sented in from of parametric models, by combining it with nonpara-
metric models that are identified from data (Thompson and Kramer,
1994, von Stosch et al., 2014). In general, the model structure of DNNs
or dynamic hybrid semi-parametric models can be expressed as a set
of Ordinary Differential Equations (ODEs), i.e.,

dx
dt

¼ f ðx; z; t;wÞ; xðtoÞ ¼ xo; ð1Þ

where x is a vector of state variables, z is a vector of measured
variables, t is the time, w represents all model parameters and f is a
vector of rate functions describing how the states change along with
time. In case of the DNN models, these functions, f, are modeled by
NNs. In case of hybrid semi-parametric models, these functions are
combinations of NNs with fundamental knowledge, as e.g. presented
in Oliveira (2004).

Depending on the arguments of f, the model structure can either
be a one-step ahead predictor, namely if measured variables, z, are
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incorporated or a multi-step ahead predictor if f ¼ f ðx; t;wÞ. In any
case, Eq. (1) needs to be integrated to obtain the state estimations x,
which is usually done numerically. Whereas in the case of multi-step
ahead predictors traditional numerical integration schemas can readily
be applied (e.g. the ode45 of the MATLAB toolbox), this is not the case
for one-step ahead prediction structures, since the value of the zmight
not be measured/available at the time instances at which f is evaluated
by the traditional schemas. Thus, for their integration either a fixed-
step size schema, such as the well known Euler or Heun is adopted,
fitting the step size to the sampling frequency of z, or some approach
is adapted to represent z as a function of time, e.g. spline or polynomial
approaches, and then standard adaptive integration schema is applied,
as for multi-step ahead predictors. Both approaches are computation-
ally inefficient. Fixed step size methods allocate the function evalua-
tions on a rigid grid, completely disregarding f 's curvature. Inter-
polation becomes computational expensive when repetitively carried
out as e.g. for network structure discrimination and network training.
Moreover for other types of measured variables, such as those
obtained from spectroscopic devices (e.g. Near InfraRed (NIR)), the
application of interpolation techniques might not even be appropriate,
since the error introduced by the interpolation technique can be great.

Another issue at stake is to what extend the training of the
nonparametric model, i.e. parameter identification, will compen-
sate for the numerical error introduced due to an inappropriate
step-size. While it can generally be expected that the overall error
will decrease due to the compensation, the function that is sought
to be modeled is distorted.

In what follows, a numerical integration method is proposed
that provides the solution within user specified tolerances at the
desired time instances by varying the step size, but that only
evaluates the function f ðxðtzÞ; zðtzÞ; tz; wÞ at those time instances
tz at which measured variables z are available. The proposed
methodology is (1) analyzed using a simulation case study and
(2) evaluated in comparison to fixed step size methods on an
experimental case study. In addition the mutual interference
between step size, parameter identification, learning of the neural
network and model performance is assessed.

2. Methodology

Two conditions arise for the numerical integration:

2.1. Condition 1 (C1)

For parameter identification or for model performance assess-
ment, Eq. (1) needs to be solved at those time instances at which
state measurements were made. Most numerical integration meth-
ods are capable of this. The methods usually either integrate from
time instance to time instance or they integrate over the whole time
interval and interpolate thereafter (Shampine, 1987), the post-
interpolation usually being computationally less expensive.

2.2. Condition 2 (C2)

For the numerical integration of Eq. (1), the measured variables,
z, needs to be provided at those time instances tz at which the
function f ðxðtzÞ; zðtzÞ; tz;wÞ is evaluated. Even though z is measured
with high frequency (implied through its choice as input) it might
not be available at tz. To obtain zðtzÞ, Hermite cubic interpolations
or smoothing spline interpolation can be applied for some types of
measured variables, but during the network structure discrimina-
tion, the network training or process optimization the repetitive
interpolation becomes computationally expensive. For other types
of measured variables, such as those obtained from spectroscopic
devices (e.g. Near InfraRed (NIR)), the application of interpolation
techniques might not even be appropriate, because (i) the error
introduced by the interpolation technique can be large; and (ii) the
number of measured variables is large, wherefore interpolations
come with a significant time and computational burden. In order
to avoid (repetitive) interpolations, fixed step size methodologies
find application in which the integration step-size is determined
by the sampling frequency of the measured variables z (Schubert
et al., 1994; van Can et al., 1996; von Stosch et al., 2012). However,
it is well known that fixed step size methodologies are, likewise,
not computationally efficient.

The sampling rate of online measured variables, z, is in most (bio)
chemical processes both time constant and frequent. In contrast, the
proportions of the divisions made for each step in most standard
numerical integration schema, such as Runge–Kutta Fehlberg (4–5) or
Dormand–Price (4–5) (Gladwell et al., 2003, Ashino and Vaillancourt,
2009) are irregular. Therefore their direct application along with the
frequently sampled online measurements is hindered. In the follow-
ing the intermeshing use of four integration methods, all of which
having different but regular step proportions, is proposed. Since their
application comes with different requirements on two consecutive
steps, the time interval of the integration is subdivided into different
sections, as explained in the following. For each of these sections a
different integration schema is applied. A schema for the control of
the integration error is proposed, in which the adaptation of the step
size is carried out with respect to the given sampling time instances
of the measurements.

2.3. Time instance analysis and classification of equal property
sections

The proposed numerical integration method has to obey to two
timelines, (1) the timeline at which the solution of the ODE is
desired, tXmes, i.e. the time instances at which infrequent offline
measurements have been obtained and at which the solution of the
ODE is compared to the measurements (e.g. for parameter identifica-
tion see Section 3.1), see Fig. 1A; and (2) the timeline of the frequent
online measurements, tz , whose entries determine the minimal
possible step sizes that can be chosen, see Fig. 1B. The sampling
frequency of zðtzÞ is typically constant throughout the experiment,
such that the increments between the time instances contained in tz
do all have the same size. However, online measurements might not
exist at the time instances of the offline measurements at which the
solution is desired, i.e. the time instance elements of tXmes do not
have to be contained in tz , see Fig. 1. In order to obey to these given
conditions, it is proposed to divide the timeline into distinct sections
such that for the numerical integration of each section a different
methodology can be applied. In particular, the time vector tmix

(which contains all the sampling times of tXmes & tz) is divided into
the following categories, which are represented in Fig. 1:

S1) Sections with (at least) two equal sequential steps; (equal in
the context of numerics meaning up to eight digits behind the
point, 10�8);

Fig. 1. (A) Timeline at which the ODE solution is desired e.g. at the time-instances
of offline measured state variables; (B) timeline of online measured variables;
(C) timeline comprising timelines A and B; and (D) classification of the timeline
C into sections S1–S3.
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