
Combination of dynamic bit vectors and transaction information for
mining frequent closed sequences efficiently

Minh-Thai Tran a, Bac Le b, Bay Vo c,n

a Faculty of Information Technology, Information Technology College, Ho Chi Minh City, Vietnam
b Department of Computer Science, University of Science, VNU-Ho Chi Minh, Vietnam
c Faculty of Information Technology, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam

a r t i c l e i n f o

Article history:
Received 24 May 2014
Received in revised form
23 October 2014
Accepted 28 October 2014
Available online 28 November 2014

Keywords:
Dynamic bit vector
Frequent closed sequence
CloFS-DBV

a b s t r a c t

Sequence mining algorithms attempt to mine all possible frequent sequences. These algorithms produce
redundant results, increasing the required storage space and runtime, especially for large sequence
databases. In recent years, many studies have proved that mining frequent closed sequences is more
efficient than mining all frequent sequences. The desired information can be fully extracted from
frequent closed sequences. Most algorithms for mining frequent closed sequences use a candidate
maintenance-and-test paradigm. The present paper proposes an algorithm called CloFS-DBV that uses
dynamic bit vectors. Various methods are employed to reduce memory usage and runtime. Experimental
results show that CloFS-DBV is more efficient than the BIDE and CloSpan algorithms in terms of
execution time and memory usage.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sequential pattern mining is a fundamental problem in knowledge
discovery and data mining with broad applications, including those in
the analysis of customer purchase behavior, web access patterns, sci-
entific experiments, disease treatment, natural disaster prevention,
and protein formation. Sequential pattern mining includes two main
stages: frequent pattern mining and rule mining. Many studies have
modified the AprioriAll algorithm (Agrawal and Srikant, 1995) for min-
ing frequent sequential patterns. Unlike the general mining of frequent
sequences, the mining of frequent closed sequences has not been
extensively studied. Although some algorithms have been proposed,
such as CloSpan (Yan et al., 2003), CLOSETþ (Wang et al., 2003), and
BIDE (Wang et al., 2007), their performance is poor for large databases.
BIDE detects frequent sequences, not closed ones, and prunes candi-
dates early, instead of using maintenance-and-test patterns.

Recently, many authors have proposed techniques that present
data in a vertical format (Song et al., 2005), use projection databases
operation (Pei et al., 2001), use bit vector data structures (Song
et al., 2008), all of which have been shown to be effective. However,
the storage space and execution time can be further reduced in the
mining process for large sequence databases.

The present study proposes the CloFS-DBV algorithm, which
uses a vertical data format and data compression, and divides the

search space to reduce the required storage space and execution
time for mining frequent closed sequences. The rest of the paper is
organized as follows. Section 2 gives the problem definition.
Section 3 summarizes related work. Sections 4 and 5 present the
proposed algorithm and experimental results, respectively. The
conclusions and future work are given in Section 6.

2. Problem definition

Consider a sequence database with a set of distinct events
I¼ fi1; i2; i3;⋯; ing, where ij is an event (or an item), where
1r jrn. A set of unordered events is called an itemset. Each itemset
is put in brackets, for example ðABCÞ. To simplify notation, for itemsets
that contain only a single item, the brackets are omitted, for example
B. A sequence S¼ fe1; e2; e3;⋯; emg is an ordered list of events, where
ej ð1r jrmÞ is an itemset. Suppose that ℓ is the number of events in
a sequence. A sequence with length ℓ is called an ℓ�sequence. For
example, ABðAEÞCB is a 6�sequence. A sequence Sa ¼ a1; a2; ⋯; am is
contained in another sequence Sb ¼ b1; b2; ⋯; bn if there exist inte-
gers 1r i1o i2o⋯o imrn such that ai ¼ bi1; a2 ¼ bi2;⋯; am ¼ bim.
If sequence Sa is contained in sequence Sb, Sa is called a subsequence
of Sb and Sb is called a supersequence of Sa, denoted as SaDSb. A
sequence database is denoted as D¼ fs1; s2; s3;⋯; s Dj jg, where jDj is
the number of sequences in D and si ð1r ir jDjÞ is a transaction in
the form ID; Sequence, where the attribute ID is used to describe the
information of si corresponding to transaction information over time.

The absolute support (support) of a sequence Sa in a sequence
database D is calculated as the number of occurrences of Sa in the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2014.10.021
0952-1976/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: minhthai@itc.edu.vn (M.-T. Tran),

lhbac@fit.hcmus.edu.vn (B. Le), bayvodinh@gmail.com (B. Vo).

Engineering Applications of Artificial Intelligence 38 (2015) 183–189

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2014.10.021
http://dx.doi.org/10.1016/j.engappai.2014.10.021
http://dx.doi.org/10.1016/j.engappai.2014.10.021
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.10.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.10.021&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.10.021&domain=pdf
mailto:minhthai@itc.edu.vn
mailto:lhbac@fit.hcmus.edu.vn
mailto:bayvodinh@gmail.com
http://dx.doi.org/10.1016/j.engappai.2014.10.021

transactions of D, denoted as supDðSaÞ. The support of a sequence is
given in the notation sequence : support. For example, a sequence
AB with support 3 is represented as AB : 3.

Given a minimum support threshold minSup, a sequence Sa is a
frequent sequence on D if supDðSaÞZminSup. If sequence Sa is
frequent and there exists no proper supersequence Sb of Sa with
the same support, Sa is called a frequent closed sequence, i.e., there
does not exist Sb such that SaDSb and supD Sað Þ ¼ supDðSbÞ. The
problem of mining frequent closed sequences is to find a complete
set of frequent closed sequences for an input sequence database D
and a given minimum support threshold minSup.

Example 1. Consider the sequence database in Table 1. The
database has five unique items I ¼ A; B; C;D; Ef g and four transac-
tions, i.e., jDj ¼ 4. Assume that the minimum support threshold is
minSup¼ 2 ð50%Þ. If all frequent sequences of D are mined with
the given minSup, the following 32 sequences are obtained:
SFS¼{A : 4, AA : 4, AB:3, AC:4, (AC):2, AAB:2, AAC:2, A(AC):2,
ABA:3, ABB:3, ABC:3, A(BC):3, ACA:2, ACB:2, ABAB:2, AB(BC):2,
A(BC)A:2, A(BC)B:2, B:3, BA:3, BB:3, BC:3, (BC):3, BAB:2, B(BC):2,
(BC)A:2, (BC)B:2, C:4, CA:3, CB:2, CC:2, CAC:2}. In contrast, mining
the frequent closed sequences yields SFCS¼{AA:4, AC:4, AAC:2, A
(AC):2, ABA:3, ABB:3, ABC:3, A(BC):3, ABAB:2, AB(BC):2, A(BC)A:2, A
(BC)B:2, CA:3, CAC:2}, which has only 14 sequences.

Frequent closed sequences SFCS are thus more compact than
general frequent sequences SFS. This is due to subsequence Sa with
the same support as that of supersequence Sb being absorbed by Sb
without affecting the mining results. For example, sequence ðBCÞA :

2 is absorbed by sequence AðBCÞA : 2 because ðBCÞADAðBCÞA and
supDððBCÞAÞ ¼ supDðAðBCÞA Þ ¼ 2.

At first, the frequent sequences with length 1 are mined from a
sequence database. After that, these frequent sequences will com-
bine (or extend) each other to form new candidates with length 2.
This process is repeated until there are no new generated frequent
sequences. In general, the sequences with length k are used to
generate sequences with length kþ1. Besides the generation of
candidates, the checking of frequent closed sequences is applied in
each process. The following definitions are used in the process of
extending sequences and checking frequent closed sequences.

Definition 1. (substring of a sequence). Let S be a sequence.
subi;jðSÞ ðir jÞ is defined as a substring of length ðj� i þ1Þ from
position i to position j of S. For example, sub1;3ðBABCÞ is BAB and
sub4;4ðBABCÞ is C.

Definition 2. (extending a sequence from a 1-sequence). Let α and β
be two frequent 1-sequences. ftα:pαg and ftβ :pβg are the transac-
tions and positions of sequences α and β, respectively. There are
two forms of sequence extension

Itemset extension : 〈ðαβÞ〉ftβ :pβg; if ðαoβÞ4ðtα ¼ tβÞ4ðpα ¼ pβÞ:
ð2:1Þ

Sequence extension : 〈αβ〉ftβ :pβg; if ðtα ¼ tβÞ4 ðpαopβÞ ð2:2Þ

Definition 3. (extending a sequence from a k-sequence). Let α and β
be two frequent k-sequences ðk41Þ, u¼ subk;k αð Þ, and v¼ subk;k β

� �
.

ftα:pαg and ftβ :pβg are the transactions and positions of sequences α
and β, respectively. There are two forms of sequence extension

Itemset extension : αþ iβ¼ sub1;k�1ðαÞðuvÞftβ :pβg
if ðuovÞ4 ðtα ¼ tβÞ4 ðpα ¼ pβÞ4ðsub1;k�1ðαÞ ¼ sub1;k�1ðβÞÞ

ð3:1Þ

Sequence extension : αþ sβ¼ αvftβ:pβg;
if ðtα ¼ tβÞ4ðpαopβÞ4ðsub1;k�1ðαÞ ¼ sub1;k�1ðβÞÞ ð3:2Þ

Definition 4. Let S¼ e1e2⋯en. An item e' can be added to a pattern
extension of S in one of three positions

S0 ¼ e1e2⋯ene04ðsupDðS0Þ ¼ supDðSÞÞ ð4:1Þ

(i 1r ionð Þsuch that S0 ¼ e1e2⋯eie0⋯en4ðsupDðS0Þ ¼ supDðSÞÞ
ð4:2Þ

S0 ¼ e0e1e2⋯en4ðsupDðS0Þ ¼ supDðSÞÞ ð4:3Þ
In (4.1), item e0 appears after en, so item e0 is called a forward-

extension and S0 is called a forward-extension sequence. For
example, sequence AC : 4 is a forward-extension of sequence A :

4 because sequence C is extended after sequence A and their
support is 4. In (4.2) and (4.3), item e0 appears before en, so item
e0 is called a backward-extension and S0 is called a backward-
extension sequence.

For example, sequence CAC : 2 is a backward-extension of
sequence CC : 2 because sequence A is extended in the middle of
sequence CC and their support is 2.

Definition 5. Let S¼ e1e2⋯en. The starting position of sequence S
is the position of the first appearance of itemset e1. For example, in
the sequence ABðABCÞCB, the starting position of sequence ðABCÞ is
3, and that of sequence ABB is 1.

3. Related work

Mining frequent sequences was first proposed in 1995 by
Agrawal and Srikant with their AprioriAll algorithm, which is based
on the Apriori property. Agrawal and Srikant then expanded the
mining problem in a general way with the GSP algorithm (Srikant
and Agrawal, 1996). Since then, many frequent sequence mining
algorithms have been proposed to improve mining efficiency. The
algorithms use various approaches for organizing data and storing
mined information. Typical algorithms include SPADE (Zaki, 2001),
PrefixSpan (Pei et al., 2001), SPAM (Ayres et al., 2002), and LAPIN-
SPAM (Yang and Kitsuregawa, 2005). The SPAM algorithm organizes
data in a vertical bitmap format and uses a dictionary tree structure
to store mined information. PrefixSpan uses database projection for
sequence extension to reduce the search space, with the data
presented horizontally. The LAPIN-SPAM algorithm uses a list to
store the final positions of items and a set of boundary positions of
the prefix to reduce the scope of the search space.

Various algorithms have been proposed for mining non-red-
undant frequent sequences to reduce the required storage space
and runtime for mining rules. Frequent closed sequence mining and
frequent closed itemset mining algorithms include A-CLOSE
(Pasquier et al., 1999), CLOSET (Pei et al., 2000), CHARM (Zaki and
Hsiao, 2002), and CLOSETþ (Wang et al., 2003). Most of these
algorithms maintain mined frequent itemsets in order to test
frequent closed sequences, which require a lot of memory. CLOSETþ
uses a two-level hash-index structure and a tree structure for storing
the itemsets to reduce memory space and the time required for
testing closed itemsets. CloSpan (Yan et al., 2003) uses a maintain-
and-test pattern method and combines a hash-index structure with a
tree structure for storing sequences. This algorithm prunes patterns

Table 1
Example sequence database D.

ID Sequence

1 CAA(AC)
2 AB(ABC)B
3 A(BC)ABCE
4 AB(BC)AD

M.-T. Tran et al. / Engineering Applications of Artificial Intelligence 38 (2015) 183–189184

Download English Version:

https://daneshyari.com/en/article/380521

Download Persian Version:

https://daneshyari.com/article/380521

Daneshyari.com

https://daneshyari.com/en/article/380521
https://daneshyari.com/article/380521
https://daneshyari.com

