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a b s t r a c t

This article presents multi-objective variants of two popular metaheuristics, namely, the artificial bee colony
algorithm (ABC) and the teaching learning based optimization algorithm (TLBO). Both of them are used to solve
an optimal power flow problem. The proposed multi-objective variants are based on a decomposition
approach, where the multi-objective optimization problem is decomposed into a number of scalar optimization
sub-problems which are simultaneously optimized. The proposed algorithms are tested on the IEEE 30-bus
system with different objectives. In addition, an algorithm based on fuzzy set theory is used to select the best
committed solution. The proposed approaches are compared with others metaheuristic algorithms available in
the specialized literature. Results indicate that the proposed approaches are highly competitive and also able to
generate a well-distributed set of non-dominated solutions for the optimal power flow problem.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The optimal power flow (OPF) problem has a significant impor-
tance in the power system's operation, planning, economic sche-
duling, and security. It is a non-linear con strained optimization
problem, where the solution attains the control variables optimal
adjustment, while at the same time satisfying equality and inequa-
lity constraints related to the equipments' rating, in order to opti-
mize a certain objective function.

In general, the optimal power flow problem may include
several objective functions, possibly in conflict with each other.
Such kind of optimization problem has a set of possible solutions
(named Pareto optimal set), which represent the best commitment
among the objectives (Stadler, 1988). Two major solution approaches
may be identified:

(1) The first approach is based on conventional methods. Such as
Gradient-based Methods, Non-Linear Programming (NLP),

Quadratic Programming (QP), Linear Programming (LP) and
Interior Point Methods (Lee et al., 1985; Momoh et al., 1999a, b),
the Weighting Method (Kuo et al., 2005), and the ε-Constraint
Method (Hsiao et al., 1994).

(2) The second approach is based on the use of metaheuristic
algorithms such as the Differential Evolution (DE) (Abido
and Al-Ali., 2012), the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) (Jeyadevi et al., 2011; Deb et al.,
2002), Particle Swarm Optimization (PSO) (Abido, 2011),
Harmony search algorithm (Sivasubramani and Swarup,
2011), and the Hybrid Evolutionary Programming Technique
(Alawode et al., 2010).

Conventional methods are based on an estimation of the global
minimum. However, due to difficulties of differentiability, non-
linearity, and non-convexity, these methods may not guarantee to
reach the global optimum (Yamille et al., 2008). Moreover, these
methods exhibit some limitations, depending upon the type of
problem, e.g., when the objective function is not available in
algebraic form. Thus, metaheuristics (from which evolutionary
algorithms is a particular subclass) have become a popular choice
for solving complex optimization problems, due to their flexibility,
generality, and ease of use. Additionally, most metaheuristics
require little or no specific domain knowledge.

Modern multi-objective evolutionary algorithms (MOEAs) aim
at generating a number of Pareto-optimal solutions as diverse as

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2014.01.016
0952-1976 & 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: mmedina@gdl.cinvestav.mx (M.A. Medina),

swagatam.das@isical.ac.in (S. Das), ccoello@cs.cinvestav.mx (C.A. Coello Coello),
jramirez@gdl.cinvestav.mx (J.M. Ramírez).

1 Carlos A. Coello Coello acknowledges support from CONACyT project no.
103570.

2 Juan M. Ramírez acknowledges support from CONACyT project nos. 167933
and 188167.

Engineering Applications of Artificial Intelligence 32 (2014) 10–20

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2014.01.016
http://dx.doi.org/10.1016/j.engappai.2014.01.016
http://dx.doi.org/10.1016/j.engappai.2014.01.016
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.01.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.01.016&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.01.016&domain=pdf
mailto:mmedina@gdl.cinvestav.mx
mailto:swagatam.das@isical.ac.in
mailto:ccoello@cs.cinvestav.mx
mailto:jramirez@gdl.cinvestav.mx
http://dx.doi.org/10.1016/j.engappai.2014.01.016


possible. Indeed, MOEAs need a density estimator that distributes
solutions along the Pareto front (e.g., crowding distance, fitness
sharing, niching). However, there is evidence that these methods
cannot always provide good results, especially when dealing with
complex multi-objective problems (MOP) (Zhang and Li, 2007; Li
and Zhang, 2009).

Recently, a novel MOEA framework called the multi-objec-
tive evolutionary algorithm based on decomposition (MOEA/D)
(Zhang and Li, 2007), has been proposed. MOEA/D decomposes
a MOP into several single-objective optimization sub-problems
with neighborhood relationship. In this way, a set of optimal
solutions is achieved by minimizing each sub-problem instead
of using the traditional Pareto ranking methods. This has given
rise to a new generation of MOEAs. Nevertheless, the performance
of MOEA/D in power system applications has not been fully
investigated.

This paper proposes a modified artificial bee colony algorithm
and a teaching-learning algorithm in the MOEA/D framework. The
proposed approaches are used to solve an optimal power flow
problem, with competing objectives.

In order to minimize the total fuel cost, the active power losses
and a voltage stability index (Kessel and Glavitsch, 1986), the
proposed algorithms estimate the following optimal values: (i) the
generators' voltage magnitudes; (ii) generators' active power out-
puts, (iii) transformers' tap settings; (iv) the compensating value
for shunt elements (reactors/capacitors). In addition, an algorithm
based on fuzzy set theory is used to select the best committed
solution.

The effectiveness of the proposed approaches is demon-
strated and compared with respect to a MOEA based on decom-
position, which is representative of the state-of-the-art in the
area: MOEA/D-DRA (Zhang et al., 2009). Results are also com-
pared with respect to the NSGA-II (Deb et al., 2002), which
remains as the most popular Pareto-based MOEA. The methods
are applied on an IEEE 30-bus test system. Additionally, results
reported in the open research (Abido and Al-Ali., 2012;
Sivasubramani and Swarup, 2011) are also included for a com-
parative study.

The rest of the paper is organized as follows. Section 2 presents
some basic background. In Section 3, the general framework of
the proposed approaches is summarized. Section 4 presents the
problem formulation and the method based on fuzzy theory for
choosing the best committed solution. Simulation results and a
comparative study are presented in Section 5. Finally, our conclu-
sions are provided in Section 6.

2. Preliminaries

2.1. Multi-objective optimization

A multi-objective optimization problem (MOP) is formulated as
follows:

Min FðxÞ ¼ ff 1ðxÞ; :::; f mðxÞg
Subject to xAΩ ð1Þ

where x is the vector of decision variables, and Ω is the feasible
region within the decision space. F : Ω-ℜmis defined as the m
objective functions mapping.

In multi-objective optimization, the goal is to find the best possible
trade off among the objectives since, frequently, one objective can be
improved only at the expense of worsening another. To describe the
concept of optimality for problem (1) the following definitions are
provided.

Definition 1. Let x; yAΩ, such that xay, we say that x dominates
y (denoted by x!y) if and only if, f iðxÞr f iðyÞ for all i¼1,…, m.

Definition 2. Let xnAΩ, we say that xn is a Pareto optimal
solution, if there is no other solution yAΩ such that y!xn.

Definition 3. The Pareto Optimal Set ( PS
�!

) is defined by PS
�!¼

fxAΩjxis Pare to Optimal Solutiong, while its image PF
�!¼fFðxÞ

��
xA PS

�!g is called the Pareto Optimal Front.

2.2. Decomposition of a multi-objective optimization problem

There are several approaches for transforming a MOP into a
number of scalar optimization problems, which have been
described in detail in (Miettinen., 1999). Usually, these methods
use a weighting vector to define a scalar function and, under certain
assumptions (e.g., the minimum is unique, the weighting coeffi-
cients are positive, etc.), a Pareto optimal solution is achieved by
minimizing such function. In this paper, the weighted Tchebycheff
approach is used to decompose the MOP. In this approach, the
scalar optimization problem is stated as (Miettinen., 1999):

Minimize gðxjw; znÞ ¼ max
iA f1;::;mg

wi f iðxÞ�zin
�� ��� �

Subject to xAΩ ð2Þ
where w¼(w1,..,wm) is a weighting vector and wiZ0 for all i¼1,…,
m.∑wi¼1 and vector zn¼(zn1,…, znm) represents the reference point,
i. e., zin ¼ min ff iðxÞ

��xAΩg, i¼1, …, m, where m is the number of
objective functions.

For each Pareto-optimal solution xn there exists a weighting
vector w such that xn is the optimal solution of (2), and each
optimal solution is a Pareto-optimal solution for (1). Therefore, it is
possible to obtain different Pareto optimal solutions using differ-
ent weighting vectors w.

2.3. Modified artificial bee colony

The first framework of the Artificial Bee Colony (ABC) was
introduced by Karaboga in 2005 as a new swarm intelligent
technique inspired by the foraging behavior of a honey bee swarm
(Karaboga, 2005). In ABC, a colony of artificial bees consists of
three groups of bees: employed bees, onlooker bees, and scout
bees. In the algorithm, the position of a food source represents a
possible solution to the optimization problem, and the nectar
amount of a food source corresponds to the quality (fitness) of the
associated solution. Each food source is exploited by only one
employed bee. In other words, the number of employed bees is
equal to the number of food sources existing around the hive
(number of solutions in the population). The employed bee whose
food source has been abandoned becomes a scout.

Akay and Karaboga (Akay and Karaboga, 2012) proposed some
modifications to the standard ABC algorithm in order to improve
the convergence rate. The pseudo-code of the modified ABC
algorithm proposed by Akay and Karaboga can be summarized
in the following way (Akay and Karaboga, 2012):

1: Initialization
2: Evaluation
3: Cycle¼1
4: Repeat
5: Employed bees phase
6: Calculate probability for Onlookers
7: Onlooker bees phase
8: Scout bee phase
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