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a b s t r a c t

This paper presents a capable neural network for solving strictly convex quadratic programming (SCQP)
problems with general linear constraints. The proposed neural network model is stable in the sense of
Lyapunov and can converge to an exact optimal solution of the original problem. A block diagram of the
proposed model is also given. Several applicable examples further show the correctness of the results
and the good performance of the model.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The quadratic program arises in a wide variety of scientific and
engineering applications including regression analysis, function
approximation, signal processing, image restoration, parameter
estimation, filter design, and robot control (Agrawal and Fabien,
1999; Avriel, 1976; Bazaraa et al., 1993; Bertsekas, 1989; Boyd and
Vandenberghe, 2004; Fletcher, 1981; More and Toroaldo, 1991). In
many real-time applications these optimization problems have a
time-varying nature, they have to be solved in real time. One
promising approach for handling these optimization problems
with high dimensions and dense structure is to employ an artificial
neural network based on circuit implementation. The main idea of
the neural network approach for optimization is to construct a
nonnegative energy function and establish a dynamic system that
represents an artificial neural network. The dynamic system is
usually in the form of first order ordinary differential equations.
Furthermore, it is expected that the dynamic system will approach
its static state (or an equilibrium point), which corresponds to the
solution for the underlying optimization problem, starting from an
initial point. The main advantage of neural network approach to
optimization is that the nature of the dynamic solution procedure
is inherently parallel and distributed. Therefore, the neural net-
work approach can solve optimization problems in running time at

the orders of magnitude much faster than the most popular
optimization algorithms executed on general purpose digital
computers. In addition, neural networks for solving optimization
problems are hardware-implementable; that is, the neural net-
works can be implemented by using integrated circuits.

The neural network for solving mathematical programming
problems was first proposed by Tank and Hopfield (1986). Since
then, neural networks for solving different kinds of quadratic
programming problems have been rather extensively studied and
some important results have also been obtained. For example one
can see (Ai et al., 2006; Ding and Huang, 2008; Effati and Nazemi,
2006; Effati and Ranjbar, 2011; Gao and Liao, 2006, 2010; Hu,
2009; Hu and Wang, 2007; Huang, 2002; Jiang et al., 2009; Leung
et al., 2001; Lv et al., 2010; Maa and Shanblatt, 1992; Nazemi, 2011;
Tao et al., 2001; Xia, 1996; Xia and Wang, 1999, 2000, 2004a; Xia
et al., 2004; Xia and Feng, 2003, 2005; Xue and Bian, 2007, 2009;
Ding and Huang, 2008; Zhang and Constantinides, 1992; Zhang
et al., 2011; Wu et al., 1996) where several neural network models
for solving convex quadratic programming, degenerate quadratic
programming, convex quadratic bilevel programming and convex
quadratic minimax problems have been proposed. All these men-
tioned literatures can be classified into two categories. One is
functional transformation, which involves a mapping of an
inequality constraint to an equality, and a penalty is constructed
to penalize the inequality constraint violation. The other is an
approach that converts the inequality constraints into the equality
constraints by adding slack or surplus variables. Both approaches,
however, deal with inequality constraints indirectly. The neural
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network models formulated on the basis of them are rather
complicated and difficult to be realized in the form of hardware.
Thus, on the basis of the above analysis, proposing an efficient
neural network for solving the SCQP problems with a simple
structure, good stability and convergence results is very necessary
and meaningful.

By modifying the multipliers associated with inequality con-
straints, we can directly solve the convex quadratic programming
problem without nonnegative constraints of the multipliers
associated with inequality constraints. Hence it is no longer
necessary to convert the inequality constraints into the equality
constraints by using the slack variables, and consequently com-
plexity and difficulty of computation can be reduced. Utilizing
this technique, in this paper a neural network model for solving
the SCQP problem with ease of computation and desirable
stability results is exhibited. Based on the saddle point theorem,
the equilibrium point of the proposed neural network is proved
to be equivalent to the solution of the Karush Kuhn Tucker (KKT)
conditions of the SCQP problem. The existence and uniqueness of
an equilibrium point of the presented neural network model are
also analyzed. By constructing a suitable Lyapunov function, a
sufficient condition to ensure global stability in the sense of
Lyapunov of the unique equilibrium point of the proposed model
is precisely studied.

This paper is organized as follows. Section 2 describes the
system model and gives some necessary preliminaries. Section 3
discusses the stability of the equilibrium point and the conver-
gence of the optimal solution. Section 4 provides several numer-
ical examples to demonstrate the validity of the obtained results.
Some conclusions are drawn in Section 5.

2. A neural network model

We are concerned with a SCQP problem of the following form:

min 1
2 x

TQxþDTx ð1Þ
subject to

Ax�br0; ð2Þ

Ex� f ¼ 0; ð3Þ
where QARn�n is a symmetric positive definite matrix, AARm�n,
bARm, EARl�n, f ARl, xARn and rankðA; EÞ ¼mþ l.

For the convenience of later discussions, it is necessary to
introduce a few notations. Throughout this paper, Rn denotes the
space of n-dimensional real column vectors and T denotes the
transpose. In what follows, J � J denotes the l2-norm of Rn and
x¼ ðx1; x2;…; xnÞT . For any differentiable function f : Rn-R,
∇f ðxÞARn means the gradient of f at x and ∇2f ðxÞARn�n means
the Hessian matrix of f ðxÞ. For any differentiable mapping
F ¼ ðF1;…; FmÞT : Rn-Rm, ∇F ¼ ½∇F1ðxÞ;…;∇FmðxÞ�ARn�m denotes
the transposed Jacobian of F at x. If AARm�n, then the ith row of A
is denoted by Ai: and the jth column of A is denoted by A:j.

Consider the Lagrange function of (1)–(3) similar to Huang
(2002) as

Lðx;u; vÞ ¼ 1
2
xTQxþDTxþ1

2
∑
m

k ¼ 1
u2
k ðak:x�bkÞþ ∑

l

p ¼ 1
vpðep:x� f pÞ: ð4Þ

According to the KKT conditions for problem (1)–(3) in Bazaraa
et al. (1993), xnARn is an optimal solution of (1)–(3) if and only if
there exist unARm and vnARl such that ðxnT ;unT ; vnT ÞT satisfies

unZ0; Axn�br0; unT ðAxn�bÞ ¼ 0;
QxnþDþATunþETvn ¼ 0;
Exn� f ¼ 0:

8><
>: ð5Þ

xn is called a KKT point of (1)–(3) and a pair ðunT ; vnT ÞT is called the
Lagrangian multiplier vector corresponding to xn. From Bazaraa
et al. (1993) we see that xn is an optimal solution of (1)–(3), if and
only if xn is a KKT point of (1)–(3).

Now, let xð�Þ, uð�Þ and vð�Þ be some time dependent variables. In
order to use a neural network method to solve the quadratic
optimization problem (1)–(3), a neural network system have to be
constructed and make the steady points of the neural network
system to satisfy the KKT conditions (5). Therefore, our aim now is
to design a neural network that will settle down to the saddle
point of Lðx;u; vÞ. We may describe the neural network model
corresponding to (1)–(3) and its dual by the following nonlinear
dynamical system:

dx
dt

¼ �∇xLðx;u; vÞ ¼ � QxþDþ1
2

∑
m

k ¼ 1
u2
ka

T
k:þ ∑

l

p ¼ 1
vpeTp:

 !
; ð6Þ

du
dt

¼∇uLðx;u; vÞ ¼ diagðu1;…;umÞðAx�bÞ; ð7Þ

dv
dt

¼∇vLðx;u; vÞ ¼ Ex� f ; ð8Þ

with an initial point ðxðt0ÞT ;uðt0ÞT ; vðt0ÞT ÞT and uðt0Þ40. Note that
in the neural network (6)–(8) the multipliers corresponding to the
inequality constraints are defined as u2

k ðk¼ 1;…;mÞ. The advan-
tage of modifying the multipliers associated with inequality
constraints is that the nonnegative constraint can be eliminated,
thus the relevant optimality conditions (5) in convex programming
theory can be transplanted here in their original forms.

To simplify the discussion, we denote y¼ ðxT ;uT ; vT ÞT ARnþmþ l,
Dn as the optimal point set of (1)–(3) and its dual, and

FðyÞ ¼
�ðQxþDþ1

2 A
Tu2þETvÞ

diagðu1;…;umÞðAx�bÞ
Ex� f

2
64

3
75:

Thus neural network (6)–(8) can be written as

dy
dt

¼ ηFðyÞ; ð9Þ

yðt0Þ ¼ y0; uðt0Þ40; ð10Þ

where η is a scale parameter and indicates the convergence rate of
the neural network (9) and (10). For simplicity of our analysis, we
let η¼ 1. An indication on how the neural network (9) and (10) can
be implemented on hardware is provided in Fig. 1.

To see how well the present neural network model (9) and (10)
is, we compare it with some existing models for solving (1)–(3).
First, let us consider

min 1
2 x

TQxþDTx ð11Þ

subject to

Ax�br0; ð12Þ

xZ0; ð13Þ

where QARn�n is a symmetric positive definite matrix, AARm�n,
bARm. In Xia (1996) a primal-dual neural network model for
(11)–(13) was developed as

d
dt

x

u

� �
¼ Qþ In AT

�A Im

" #
� �xþðx�ðQxþDÞþATuÞþ

u�ðu�AxþbÞþ
" #

; ð14Þ

where In and Im are n�n andm�m identity matrices, respectively.
The proposed neural network model for solving (11)–(13) is then
given by
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