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a b s t r a c t

The fuzzy logic controller (FLC) has the ability of handling parametric uncertainties and external
perturbations for unknown systems. A regular structure for a FLC is the proportional derivative (PD)
form. The proportional derivative fuzzy controller (PDF) could be seen as a variable gain PD controller.
Despite this characteristic, the most common drawback for any PD controller, with unknown dynamics or
even with unmodeled dynamics is the error signal differentiation. In this manuscript this disadvantage
was overtaken implementing the super-twisting algorithm (STA) as a robust exact differentiator (RED). The
information provided by the STA was injected into the PDF to enhace its performance. In this study, the
stability of the nonlinear system under the fuzzy super twisting PD controller (FSTPD) in closed loop was
analyzed using the concept of the second Lyapunov's method. Numerical simulations were designed to
show the effectiveness and advantages of the proposed FSTPD over the classical PD structure supplied with
the STA and a PDF with the derivative part obtained by a linear filter. A first example to stabilize a simple
pendulum was developed applying the FSTPD. A second example for solving a tracking control problem
was designed for a robot manipulator with six degrees of freedom. In both cases, the FSTPD showed better
performance and a significant reduction of the control energy.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Proportional Derivative (PD) controllers have become the most
successful approach implemented in industrial applications. A PD
provides a simple structure and a certain degree of accuracy for
systems described by a suitable mathematical model. PD controllers
can reduce the overshoot, rise time, settling time and it can force
better steady state behavior of the system in closed loop (Khalil,
2002; Kuo, 2005).

Since the first successful application of fuzzy sets in control systems
(Mohan and Patel, 2002; Zadeh, 1965), fuzzy logic control (FLC) in
engineering has attracted the attention of many researches. The main
idea working with FLC is devoted to control complicated nonlinear
systems with a fixed set of control rules, usually derived from the
knowledge of an expert. Several works regarding the application of
FLC as a PD structure have been presented obtaining remarkable
results (Su et al., 2004; Mudi and Pal, 1999), (Malki et al., 1994). The
stability analysis of FLC have been made in terms of bounded input–
bounded output (BIBO) stability and Lyapunov theory (Mohan and
Patel, 2002; Tang et al., 2001).

A classical PD controller is composed by proportional and
derivative terms. Most of the applications where a PD controller
is involved assume the complete access to the state vector and the
full description of the mathematical model. However, these
assumptions are difficult to fulfill in many real situations. Among
others, working with mechanical systems, where the available
output is usually described by the position of the nonlinear
system, a tachometer must be implemented to obtain the velocity
of the system and then be able to apply a PD controller (Su et al.,
2004). Unfortunately, in other real applications, the on-line mea-
surement of the signal error derivative is not available or the cost
of implementation is raised. That means, inherit to PD controllers,
there exists an associated problem, the signal differentiation.

Several attempts have been proposed to deal with the problem of
signal differentiation (Su et al., 2004; Dridi et al., 2010; Mboup et al.,
2007; Levant, 1998). The most useful tools are based on linear filters
and observers (Yu and Ortiz, 2005). However, the main problem arises
when the signal to be differentiated contains high frequency distur-
bances or the mathematical description of the signal is unknown
(Levant, 1998). Luenberger state estimators are also applied but the
exact model of the signal is a requirement for implementing this
approach (Dridi et al., 2010). Moreover, the observer parameters are
not tuned to reduce sensitivity to measurement noises or perturba-
tions (Atassi and Khalil, 2000). Another approach was given in terms
of an H1 problem for LTI systems, but it offers only sufficient

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2014.06.005
0952-1976/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: ijesusr@gmail.com (I. Salgado),

jchairez@ctrl.cinvestav.mx (I. Chairez).

Engineering Applications of Artificial Intelligence 35 (2014) 84–94

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2014.06.005
http://dx.doi.org/10.1016/j.engappai.2014.06.005
http://dx.doi.org/10.1016/j.engappai.2014.06.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.06.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.06.005&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.06.005&domain=pdf
mailto:ijesusr@gmail.com
mailto:jchairez@ctrl.cinvestav.mx
http://dx.doi.org/10.1016/j.engappai.2014.06.005


conditions with a solution of a LMI that defines a minimization
problem (Dridi et al., 2010). For the case of nonlinear systems with
random noises or perturbations, the Kalman filters are the principal
solution to obtain the tracking error derivative (Tsai et al., 2007).

When the mathematical description of a plant is unknown or
presents parametric uncertainties, a PD controller could become
inaccurate if the method selected to obtain the derivative is not
properly chosen. The problem of signal differentiationwhen the signal
contains nonlinearities and bounded noises has been solved by means
of nonlinear differentiations. In Su et al. (2004), a complete PD
controller with a nonlinear differentiator is applied to control a
permanent-magnet synchronous motor but the mathematical model
is required. For systems with parametric uncertainties, unknown
dynamics and noise in the available output, sliding mode control
(SMC) is a solution for the problem of signal differentiation (Levant,
1998). The SM offers attractive characteristics such as finite time
convergence and robustness again parametric uncertainties (Utkin,
1992). The so-called second order Sliding Modes theory (SOSM) is a
powerful tool for the problem of control and state estimation (Levant,
2007). In particular, the super-twisting algorithm (STA) has been
applied to deal with nonlinear systems with parametric uncertainties
and bounded perturbations. The STA has been studied in several
articles and it has been applied as a controller (Dávila et al., 2009),
state estimator (Davila et al., 2005) or as a RED (Levant, 1998). Applied
as a RED, the STA is capable to reproduce the derivative of an
unknown nonlinear trajectory no matter the presence of high
frequency and bounded perturbations in finite time.

The stability of SOSM had been analyzed in terms of geometric
characteristics (Davila et al., 2005). However, the advances in non-
smooth Lyapunov theory have allowed the development on new
non-smooth functions to proof the convergence of SOSM under
the Lyapunov approach (Clarke et al., 1998; Polyakov and Poznyak,
2009). The work presented in Moreno and Osorio (2012) estab-
lished a simple quadratic Lyapunov function to obtain sufficient
conditions for adjusting the gains of the STA in order to obtain
finite-time convergence in presence of bounded perturbations.

Several studies have included nonlinear techniques such as FLC and
neural networks to obtain a nonparametric representation of the
uncertain nonlinear system (Mudi and Pal, 1999; Poznyak et al., 2006;
Sung-Kwun et al., 2009). In this paper, the stability analysis of a fuzzy
PD controller in closed loop with the STA as a RED is studied. Sufficient
conditions for guarantying the stability of the closed loop system are
obtained with a non-smooth Lyapunov function. Under certain kind of
high frequency bounded perturbations, the proportional derivative
fuzzy controller supplied with the STA (FSTPD) provided practical
stability characterized by a boundary layer around the origin. Numer-
ical simulations are given to show the advantages of the proposal
presented in this work in comparison with other kind of signal
controllers and linear differentiation algorithms.

The rest of the paper is organized as follows, in Section 2 the
class of nonlinear systems to deal with it is introduced, then the
STA as a differentiator is described. In this section, the extended
system that incorporates the STA to estimate the derivative of the
signal error is given. In Section 3 the main result is summarized in
a theorem. Numerical results are presented in Section 4. Finally in
Section 5, the conclusions are given.

2. Super-twisting fuzzy PD controller

2.1. Class of nonlinear systems

Consider the nonlinear system described by the following
second order nonlinear differential equation:

€zðtÞ ¼ f ðzðtÞ; _zðtÞÞþgðzðtÞÞuðtÞþηð_zðtÞ; zðtÞ;uðtÞ; tÞ

yðtÞ ¼ zðtÞ
zð0Þ ¼ z0 and _zð0Þ ¼ zd0 given

z0; zd0ARn ð1Þ
Here zARn and _zARn, zð0Þ and _zð0Þ are the initial conditions for the
differential equation. The drift term f : R2n-Rn is a Lipschitz function
and the input associated term g : Rn-Rn�n is bounded as it will be
described later. The nonlinear function η : R2nþ1-R3n represents
some uncertainties affecting the nonlinear system satisfying

JηJ2rη0þη1
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����
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; η0;η1ARþ ð2Þ

The signal yARn is the available output vector. The control action is
represented by uARn. The class of systems considered in (1) is a
rough generalization of many mechanic, electromechanical, electric,
thermodynamic and hydrodynamic systems. The system presented in
(1) can be represented as (with the selection of xa ¼ z and xb ¼ _z)

_xaðtÞ ¼ xbðtÞ
_xbðtÞ ¼ f ðxðtÞÞþgðxaðtÞÞuðtÞþηðxðtÞ;uðtÞ; tÞ
yðtÞ ¼ CxðtÞ ð3Þ
where x¼ ½x>

a x>
b �> AR2n and C ¼ ½In�n;0n�n�.

Throughout the paper, the following assumptions are assumed
to be fulfilled.

Proposition 1. The nonlinear function f ð�Þ is unknown but satisfies
the Lipschitz condition

J f ðxÞ� f ðx0ÞJrL1 Jx�x0 J ; 8x; x0AR2n; L1ARþ ð4Þ

Proposition 2. The nonlinear system (3) is controllable, therefore
the function gðxÞ is known and it satisfies

0og� r JgðxaÞJrgþ o1; 8xaARn; g� ; gþ ARþ ð5Þ
By this assumption, the matrix gðxaÞ is invertible 8 tZ0.

Proposition 3. The control input belongs to the set Uadm defined as

Uadm≔fu : JuJ2ru0þu1 JxJ2g ð6Þ
with u0, u1ARþ . The previous condition includes several control
techniques such as classical PD controllers and even discontinuous
controllers such as sliding modes.

2.2. Nonlinear reference system

The problem considered in this paper was to complete the
trajectory tracking between the states of (1) and the stable
reference model given by

€znðtÞ ¼ hð_znðtÞ; znðtÞÞ; znð0Þ; _znð0Þ are given
ynðtÞ ¼ znðtÞ ð7Þ
where hðzn; _znÞ (znARn) is a Lipschitz function. Again, system (7)
can be transformed using the state space method with the change
of variables xna ¼ zn and xnb ¼ _zn. The reference system (7) has a
stable equilibrium point and by the converse Lyapunov theorem
(Khalil, 2002), one can ensure that the system in the new
coordinates xn ¼ ½ðxnaÞ> ðxnbÞ> �> satisfies

JxnðtÞJ2rXn

þ ; Xn

þ ARþ ; 8 tZ0

xn ¼ ½ðznÞ> ; ð_znÞ> �> ð8Þ
then, the next inequalities are assumed to be valid

J f ðxnÞ�hðxnÞJ2Λrhþ ; Λ¼Λ> 40; ΛARn�n ð9Þ
8xnAR2n solution of (7), the last inequality is valid because
functions f ðxnÞ and hðxnÞ are Lipschitz (continuous) functions and
(7) has a stable equilibrium point.
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