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a b s t r a c t

Machine health condition (MHC) prediction is useful for preventing unexpected failures and minimizing
overall maintenance costs in condition-based maintenance. The neural network (NN)-based data-driven
method has been considered to be promising for MHC prediction due to the adaptability, nonlinearity
and universal approximation capability of NNs. This paper presents an online MHC prediction approach
using online dynamic fuzzy NNs (OD-FNNs) with structure and parameters learning. To meet the
requirement of real-time application, the original OD-FNN is simplified based on an extreme learning
machine technique as follows: (1) initial fuzzy rules are randomly generated without the knowledge
of training data; (2) fuzzy rules are added and pruned uniformly by fired strength-based criteria;
(3) antecedent parameters are fixed after generation so that only consequent parameters are updated
online. The modified OD-FNN is particularly suitable for MHC prediction since: (1) fuzzy rules can evolve
as new training datum arrives, which enables us to cope with non-stationary processes in MHC;
(2) learning mechanisms applied are simple and efficient for real-time implementation. The validity and
superiority of the proposed MHC prediction approach has been evaluated by real-world monitoring data
from the accelerated bearing life.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Machine condition-based maintenance (CBM)1 aims to prevent
unexpected failures and minimize maintenance costs via condition
monitoring information (Jardine et al., 2006). There are mainly six
parts in the CBM, including data acquisition, data processing,
feature extraction, fault diagnosis, fault prognosis, and decision
making (Vachtsevanos et al., 2006). Fault prognosis is pivotal in
the CBM since it provides accurate prediction of machine health
condition (MHC) or even machine remaining useful life (RUL).
Typically, existing prognosis methods can be divided into two
categories, namely a model-based method and a data-driven method
(Jardine et al., 2006). The model-based method directly utilizes
physical models to predict the fault progression (Yu et al., 2011,

2014; Gasperin et al., 2011a,b), whereas the data-driven method
employs the collected monitoring data to model fault propagation
dynamics (Sokolowski, 2004). The fuzzy logic system (FLS) or neural
network (NN)-based method, which falls under the category of the
data-driven method, has been considered to be very promising for
MHC prediction due to the adaptability, nonlinearity and universal
approximation capability of FLSs or NNs (Zhao et al., 2009; Pan et al.,
2011a,b). Batch learning and sequential learning are two major
schemes for updating NN parameters (Rong et al., 2009). MHC
prediction is essentially an online non-stationary time-series predic-
tion problem which should perform real-time prediction while
updating NN parameters. Thus, to save implementation cost while
maintaining NN reliability, it is suggested that sequential learning
should be employed in such a problem.

The most popular NNs applied to MHC prediction are recur-
rent NNs (RNNs) and fuzzy NNs (FNNs) (Tian and Zuo, 2010;
Wang et al., 2004; Wang, 2007; Liu et al., 2009; Zhao et al., 2009;
Wu et al., 2007; Lin and Tseng, 2005; Tran et al., 2009; Chen et al.,
2011). The first NN-based MHC prediction approach was pro-
posed in Wang et al. (2004), where an enhanced FNN with
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recursive least squares (RLS) estimation was developed to fore-
cast MHC. Next, a recurrent counterpart of Wang et al. (2004) and
a multi-step counterpart of Wang (2007) were presented in
Wang (2007) and Liu et al. (2009), respectively. An extended
RNN that contains two types of feedback layers, namely Elman
and Jordan context layers, was developed for gearbox MHC
prediction in Tian and Zuo (2010). The classical FNN was applied
to predict bearing MHC in Zhao et al. (2009). An NN-based
decision support system for bearing maintenance was developed
in Wu et al. (2007), where the classical feedforward NN was
applied to estimate the life percentile and failure times of roller
bearings. To improve the reliability of MHC prediction, reliability
statistics (Lin and Tseng, 2005), regression trees (Tran et al.,
2009) and Bayesian estimation (Chen et al., 2011) were also
integrated into NN-based MHC prediction approaches. Note that
batch learning was employed in Tian and Zuo (2010), Zhao et al.
(2009), Wu et al. (2007), Lin and Tseng (2005), Tran et al. (2009),
and Chen et al. (2011). Consistent conclusions from all these
approaches are that the RNN usually outperforms the feedforward
NN, and the FNN usually outperforms the stochastic model, the
feedforward NN and the classical RNN. Yet, in spite of the effective-
ness of these state-of-the-art MHC prediction approaches, the NNs
applied therein have some common drawbacks as follows: (1) the
fixed NN structures limit the flexibility and generalization capability
of NNs; (2) the back-propagation (BP) learning algorithms applied to
parameters learning increase the risk of local minimum; and (3) the
adjustments of hidden node parameters lead to tedious designs of
learning algorithms. In addition, all these drawbacks can inevitably
increase the implementation cost of NNs.

The self-organizing FNN is a type of FNNs that contain two
learning levels: structure learning and parameters learning. Struc-
ture learning includes the generation and/or deletion of fuzzy
rules (i.e. neurons) while parameters learning includes updating
antecedent (i.e. hidden node) and/or consequent (i.e. output
weight) parameters. Roughly, the self-organizing FNN can be
divided into two categories, namely a traditional self-organizing
FNN (Juang and Lin, 1998; Lin et al., 2001; Tzafestas and Zikidis,
2001; Azeem et al., 2003; Leng et al., 2004; Rong et al., 2006; Lin
and Lian, 2010; Chen, 2011; Wu et al., 2001; Er and Deng, 2004;
Er et al., 2005; Er and Zhou, 2008; Pratama et al., 2013) and an
evolving self-organizing FNN (Yao, 1999; Garcia-Pedrajas et al.,
2003; Niska et al., 2004; Yu et al., 2008; Soleimani-B et al., 2010;
Prado et al., 2010; Dovzan and Skrjanc, 2011; Lughofer
et al., 2011). The evolving self-organizing FNN involves population-
based evolutionary computation techniques, e.g. evolutionary
programming, genetic algorithms and competitive learning, which
is usually subject to the dilemma of time-consuming (Leng et al.,
2004). The dynamic FNN (D-FNN) is a type of traditional self-
organizing FNNs whose structure can be learned dynamically (Wu
et al., 2001). The salient features of the D-FNN include: (1) fuzzy
rules can be generated hierarchically based on accommodation
boundary and system error criteria; (2) insignificant rules can be
pruned dynamically according to their contribution to system
performance; and (3) parameters learning can be achieved by
least-squares estimation without iterative tuning. Despite of fast
learning speed and favorable generalization ability, the original D-
FNN is not suitable for online prediction since its error reduction
ratio (ERR)-based pruning criterion needs to gather all historical
data. To cope with this issue, an online D-FNN (OD-FNN) with
fuzzy Q-learning and an enhanced OD-FNN with self-organizing
mapping (SOM), all without rule pruning mechanisms, were
developed in Er and Deng (2004) and Er et al. (2005), respectively.
Next, a semi-supervised learning OD-FNN was developed in Er and
Zhou (2008), where both structure and parameters learnings are
performed by reinforcement learning online. Most recently, a
parsimonious OD-FNN was developed in Pratama et al. (2013),

where antecedent parameters are allocated by extended SOM,
consequent parameters are updated by time localized least
squares estimation, and insignificant rules are deleted by an online
sequential pruning mechanism.

It is worth noting that the OD-FNN, even the self-organizing
NN, has not been applied to MHC prediction yet. Owing to the
potential of the OD-FNN for relaxing the drawbacks of the existing
NN-based MHC prediction approaches, this paper focuses on the
application of the OD-FNN to MHC prediction. Extreme learning
machine (ELM) is an emergent technique for training generalized
feedforward NNs with a key principle that all hidden node para-
meters are randomly generated without the knowledge of training
data and are fixed after generation without online updating
(Huang et al., 2006a). The result in Huang et al. (2006b) shows
that a NN trained by the ELM can also guarantee universal function
approximation capability. According to the previous analysis, some
conclusions can be obtained as follows: (1) the ERR-based offline
rule pruning criterion is not suitable for online MHC prediction;
(2) current prediction errors are unavailable for rule generation
during MHC prediction; and (3) the allocation mechanism of
antecedent parameters is unnecessary by the ELM principle. From
these conclusions, some efforts should be made so that the OD-
FNN is suitable for MHC prediction.

Based on our previous works in Li et al. (2010b) and Pan et al.
(2013), this paper presents an OD-FNN-based online MHC predic-
tion approach. The applied FNN implements a Takagi–Sugeno–
Kang (TSK) FLS based on ellipsoidal basis functions (EBFs). To meet
the requirement of real-time application, the original OD-FNN is
simplified based on the ELM technique as follows: (1) initial fuzzy
rules are randomly generated without the knowledge of training
data; (2) fuzzy rules are added and pruned uniformly by fired
strength-based criteria; (3) antecedent parameters are fixed after
generation such that only consequent parameters are updated
online. From the artificial intelligence point of view, the contribu-
tion of this study is that a simplified OD-FNN with fast learning
speed and low computational cost is proposed for the online
prediction of non-stationary time series. From the engineering
application point of view, the contribution of this study is that the
OD-FNN is successfully applied to bearing MHC prediction based
on real-world monitoring data.

The structure of the rest of the paper is as follows. The architecture
of FNNs is described in Section 2. The simplified online learning
strategy is proposed in Sections 3. The MHC prediction scheme is
given by Section 4. Application studies using real-world monitoring
data are provided in Section 5. Conclusions are summarized in Section
6. Throughout this paper, R, Rþ , Rn and Rn�m denote the spaces of
real numbers, positive real numbers, real n-vectors and n � m
matrixes, respectively, j � j and J � J denote the absolute value and
2-norm, respectively, and minf�g, maxf�g and supf�g represent the
functions of minimum, maximum and supremum, respectively.

2. Architecture of fuzzy neural networks

The applied FNN is built based on an EBF-NN and is functionally
equivalent to a TSK FLS described by the following fuzzy rules
(Mitra and Hayashi, 2000; Rong et al., 2009):

Rule j : IF x1 is A1j and ⋯ and xn is Anj

THEN ŷ is wj ð1Þ
where xiAR are input variables, ŷAR is an output variable, Aij is
the antecedent of the ith input in the jth fuzzy rule, and wj is the
consequent of the jth fuzzy rule given by

wj ¼ α0jþα1jx1þ⋯þαnjxn ð2Þ
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