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a b s t r a c t

This work proposes an effective synergy of the Intervals' Number k-nearest neighbor (INknn) classifier,
that is a granular extension of the conventional knn classifier in the metric lattice of Intervals' Numbers
(INs), with the gravitational search algorithm (GSA) for stochastic search and optimization. Hence, the
gsaINknn classifier emerges whose effectiveness is demonstrated here on 12 benchmark classification
datasets. The experimental results show that the gsaINknn classifier compares favorably with alternative
classifiers from the literature. The far-reaching potential of the gsaINknn classifier in computing with
words is also delineated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This work introduces a stochastically optimized, granular
k-nearest neighbor (knn) classifier based on INs, where IN stands
for Intervals' Number.

An IN is a mathematical object, which may represent either a
fuzzy interval or a probability distribution (Papadakis and Kaburlasos,
2010). In any case, an IN can be interpreted as an information granule.
INs have been studied in a series of publications. In particular, as
explained in Kaburlasos et al. (2013a), it has been shown that the set
F1 of INs is a metric lattice with cardinality ℵ1, where ℵ1 is the
cardinality of the set R of real numbers; moreover, F1 is a cone in a
linear space. Note that previous work (Kaburlasos, 2004; Kaburlasos,
2006) has employed the term FIN (i.e., fuzzy interval number) instead
of the term IN because it stressed a fuzzy interpretation. Likewise, the
term CALFIN, proposed previously for an algorithm which induces a
FIN from a population of measurements, was later replaced by the
term CALCIN (Papadakis and Kaburlasos, 2010). Recall that an IN
computed by algorithm CALCIN retains all-order data statistics
(Kaburlasos et al., 2013a). In the aforementioned context, the capacity
as well as the rich potential of INs, especially in industrial applica-
tions, has been demonstrated (Kaburlasos and Kehagias, 2014;
Kaburlasos and Pachidis, 2014; Papadakis and Kaburlasos, 2010).

INs have been used in an array of computational intelligence
applications regarding clustering, classification and regression

(Kaburlasos and Moussiades, 2014; Kaburlasos and Pachidis, 2014;
Kaburlasos and Papadakis, 2006; Kaburlasos et al., 2012, 2013a;
Papadakis and Kaburlasos, 2010; Papadakis et al., 2014). There is
experimental evidence that a parametric, IN-based scheme can be
optimized toward clearly improving performance. More specifically,
optimization has been pursued by stochastic search techniques
including genetic algorithms (Kaburlasos and Papadakis, 2006;
Kaburlasos et al., 2012, 2013a; Papadakis and Kaburlasos, 2010) and
particle swarm optimization (Papadakis et al., 2014) since, currently,
there are no analytic optimization methods available in the lattice
of INs.

Previous works have frequently employed an inclusion mea-
sure (σ) function as an instrument for decision making in the
lattice of INs (Kaburlasos and Pachidis, 2014; Kaburlasos et al.,
2012, 2013a; Papadakis et al., 2014). The interest of this work is in
(fuzzy) nearest neighbor classification (Derrac et al., 2014). Note
that, lately, a number of knn classifiers based on INs, namely INknn
classifiers, have been introduced (Kaburlasos et al., 2014; Pachidis
and Kaburlasos, 2012; Tsoukalas et al., 2013); nevertheless, none of
the latter classifiers was optimized. On the grounds of compelling
evidence, as explained above, this work proposes an optimized
INknn classifier toward improving performance. We remark that
various heuristic optimization methods have been proposed in
machine learning including Simulated Annealing (SA) (Chang
et al., 1994), Ant Colony (Chi and Yang, 2006), Particle Swarm
Optimization (PSO) algorithms (Huang and Dun, 2008; Lotfi
Shahreza et al., 2011), Differential Evolution (DE) (Liu and Sun,
2011; Si et al., 2012), Genetic Algorithms (GAs) (Polat and Yildirim,
2008), etc. Lately, Rashedi and colleagues have proposed the
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gravitational search algorithm (GSA) (Rashedi et al., 2009), that is a
swarm based meta-heuristic search algorithm based on the New-
tonian laws of gravity. The GSA has already been successfully
applied to numerous problems (Bahrololoum et al., 2012; Li and
Zhou, 2011; Rashedi et al., 2011; Rebollo-Ruiz and Graña, 2012,
2013; Rebollo et al., 2012; Sarafrazi and Nezamabadi-pour, 2013;
Taghipour et al., 2010; Yin et al., 2011). This work proposes a
synergy of GSA with the INknn classifier toward improving the
capacity of the latter classifier. Hence, the (granular) gsaINknn
classifier emerges whose capacity is demonstrated here compara-
tively on 12 benchmark datasets.

In a more general context, the proposed gsaINknn classifier is a
scheme of the emerging lattice computing (LC) paradigm. Note
that LC was originally defined as “the collection of Computational
Intelligence tools and techniques that either make use of lattice
operators inf and sup for the construction of the computational
algorithms or exploit lattice theory for language representation
and reasoning” (Graña, 2009). Recent work has extended the
meaning of LC as “an evolving collection of tools and methodol-
ogies that process lattice ordered data per se including logic
values, numbers, sets, symbols, graphs, etc.” (Kaburlasos and
Kehagias, 2014; Kaburlasos et al., 2013a, 2013b). The LC paradigm
provides instruments for granular computing, where uncertainty/
ambiguity is accommodated in partially/lattice-ordered informa-
tion granules (Jamshidi and Nezamabadi-pour, 2013; Kaburlasos,
2010; Liu et al., 2013; Sussner and Esmi, 2011).

A number of LC models have already been proposed in the
context of mathematical morphology. For instance, morphological
neural networks (MNN) including both morphological perceptrons
and fuzzy morphological associative memories (FMAMs) (Sussner
and Esmi, 2009, 2011; Sussner and Valle, 2006; Valle and Grande
Vicente, 2012) can be classified as LC models. In particular, Sussner
and colleagues have employed a FMAM to implement a fuzzy
inference system based on the complete lattice structure of the class
of fuzzy sets (Sussner and Valle, 2006; Valle and Sussner, 2008, 2011).
Furthermore, Graña and colleagues have applied LC techniques to
image analysis applications of mathematical morphology (Graña
et al., 2011, 2010, 2009). Of particular interest in LC is the notion of
a fuzzy lattice, which has been proposed by Nanda toward fuzzifying
a partial order relation (Nanda, 1989). Working independently
Kaburlasos and colleagues, inspired from the adaptive resonance
theory (ART) for neural computation (Carpenter et al., 1991, 1992),
have proposed a number of fuzzy lattice neural networks for clustering
and classification (Kaburlasos, 2006) operating on fuzzy lattice
reasoning (FLR) principles. The FLR classifier was introduced in
Kaburlasos et al. (2007) for inducing descriptive decision-making
knowledge (rules) in a mathematical lattice data domain, including
the space RN as a special case; moreover, the FLR classifier has been
successfully applied to a variety of problems such as ambient ozone
estimation as well as air quality assessment (Athanasiadis and
Kaburlasos, 2006). Recent trends in lattice computing appear in
Graña (2012), Kaburlasos (2011), Kaburlasos and Ritter (2007).

The layout of this paper is as follows. Section 2 outlines the
mathematical background. Section 3 presents the INknn classifier
including an explanatory application example. Section 4 describes the
GSA optimization algorithm. Section 5 details the gsaINknn classifier.
Section 6 presents comparatively experimental results regarding 12
benchmark classification datasets. Finally, Section 7 concludes by both
summarizing our contribution and delineating future work.

2. Mathematical background

This section outlines general lattice notions followed by a
hierarchy of lattices ending up to Intervals' Numbers, or INs
for short.

2.1. General lattices

A set P with a partial order (binary) relation ⊑ is called partially
ordered set or poset for short, symbolically (P,⊑) (Birkhoff, 1967;
Kaburlasos, 2006; Kaburlasos and Kehagias, 2014; Kaburlasos and
Pachidis, 2014; Rutherford, 1965). A function φ: P-Q from a poset
(P,⊑) to a poset (Q,⊑) is called isomorphic iff x⊑y 3 φ(x)⊑φ(y). It is
well known that the inverse ⊒, namely dual (order), of an order
relation ⊑ is itself an order relation. A lattice (L,⊑) is a poset with
the additional property that any two of its elements a,bAL have
both an infimum denoted by a⊓b¼ inf{a,b} and a supremum
denoted by a⊔b¼sup{a,b}. The lattice operations ⊓ and ⊔ are
called meet and join, respectively. A lattice (L,⊑) is called complete
when each of its subsets has a supremum as well as an infimum in
L. A non-void complete lattice has both a least element and a
greatest element denoted by o and i, respectively. A lattice (L,⊑) is
called totally-ordered iff for a,bAL it is either a⊒b or a⊏b. In this
work we use “square symbols” such as ⊔, ⊓ and ⊑ with general
lattice elements, “straight symbols” 3 , 4 and rwith real
numbers, and symbols [ , \ and D with sets.

An aggregate lattice (L,⊑) is the Cartesian product of N compo-
nent lattices L1,…,LN; i.e. (L,⊑)¼(L1,⊑1)�…� (LN,⊑N). The product
lattice L operations join and meet are defined as

ða1;…; aNÞ⊔ðb1;…; bNÞ ¼ ða1⊔1b1;…; aN⊔1bNÞ and
ða1;…; aNÞ⊓ðb1;…; bNÞ ¼ ða1⊓Nb1;…; aN⊓NbNÞ
A valuation on a lattice (L,⊑) is a real function v: L-R which
satisfies v(a)þv(b)¼v(a⊓b)þv(a⊔b). A valuation v is called posi-
tive iff a⊏b implies v(a)ov(b). A positive valuation function v: L-
R implies a metric function d: L � L-Rþ

0 given by d(x,y)¼v(x⊔y)�
v(x⊓y).

Generalized interval is an element of the product lattice (L,⊒)�
(L,⊑)¼(L� L,⊒�⊑). The latter lattice may simply be denoted by (Δ,
⊑). A generalized interval is denoted by [a,b]. The ordering (⊑), join
(⊔) and meet (⊓) operations in lattice (Δ,⊑) are given as follows:

½a; b�⊑½c; d�3 ðc⊑a and b⊑dÞ; ½a; b�⊔½c; d� ¼ ½a⊓c; b⊔d�; and
½a; b�⊓½c; d� ¼ ½a⊔c; b⊓d�
Here, we are interested in a dual isomorphic function θ: L-L on a
general lattice (L,⊑) such that x⊏y 3 φ(x)⊐φ(y). Based on both a
positive valuation function v: L-R and a dual isomorphic function
θ: L-L on a general lattice (L,⊑), a positive valuation function vΔ is
defined on lattice (Δ,⊑) as follows: vΔ([a,b])¼v(θ(a))þv(b).

2.2. A hierarchy of complete lattices

Next, we constructively develop a hierarchy of lattices from a
reference set LDR, where R¼ R [ f�1; þ1g is the totally-
ordered set of extended real numbers. In particular, we choose L
so that (L,r) is a complete lattice. For example, L can be R itself or
it might be an interval ½a; b� � R. In particular, for L¼ R it is o¼�1
and i¼þ1, whereas for L¼[a,b] it is o¼a and i¼b.

Any strictly increasing real function v: L-R is a positive
valuation on lattice (L,r). Moreover, any strictly decreasing
function θ: L-L is a dual isomorphic function on (L,r). Note that
choosing a suitable valuation function is problem dependent
(Jamshidi Khezeli and Nezamabadi-pour, 2012; Kaburlasos et al.,
2007; Liu et al., 2011).

Consider the lattice (Δ,⊑) of generalized intervals stemming
from lattice (L,r). A metric distance function dΔ : Δ� Δ-Rþ

0 is
defined on (Δ,⊑) as follows:

dΔð½a; b�; ½c; d�Þ ¼ vΔð½a; b�⊔½c; d�Þ�vΔð½a; b�⊓½c; d�Þ
¼ vΔð½a4c; b3d�Þ�vΔð½a3c; b4d�Þ ð1Þ

We define the set of conventional intervals as J(L)¼{[a,b]: a,bAL
and a⊑b}. Augmenting J(L) by the empty interval, denoted by O,
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