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a b s t r a c t

Speaker identification systems perform almost perfectly in neutral talking environments; however, they
perform poorly in shouted talking environments. This work aims at proposing, implementing, and
evaluating novel models called Third-Order Hidden Markov Models (HMM3s) to enhance the poor
performance of text-independent speaker identification systems in shouted talking environments. The
proposed models have been evaluated on our collected speech database using Mel-Frequency Cepstral
Coefficients (MFCCs). Our results show that HMM3s significantly improve speaker identification
performance in shouted talking environments compared to second-order hidden Markov models
(HMM2s) and first-order hidden Markov models (HMM1s) by 12.4% and 202.4%, respectively. The
achieved results based on the proposed models are close to those obtained in subjective assessment by
human listeners.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Neutral talking environments can be defined as the talking
environments in which speakers utter their speech in a “quiet
room” with no task obligations. Stressful talking environments can
be defined as the talking environments in which speakers vary
their production of speech from neutral talking environments.

Some talking environments are designed to simulate speech
generated by different speakers under real stressful talking con-
ditions. Many studies (Cummings and Clements, 1995; Bou-
Ghazale and Hansen, 2000; Zhou et al., 2001) used Speech Under
Simulated and Actual Stress (SUSAS) database in which eight
talking conditions are used to simulate speech produced under
real stressful talking conditions and three real talking conditions.
The eight talking conditions are neutral, loud, soft, angry, fast,
slow, clear, and question. The three talking conditions are 50%
task, 70% task, and Lombard. Chen (1988) used six talking
environments to simulate speech under real stressful talking
environments. These environments are neutral, fast, loud, Lom-
bard, soft, and shouted. Shouted talking environments can be
defined as when speakers shout, their intention is to create a very
loud acoustic signal, either to increase its range of transmission or
its ratio to background noise.

Speaker recognition has two branches: speaker identification
and speaker verification (authentication). Speaker identification is

the process of automatically determining who is speaking from a
set of known speakers. Speaker verification is the process of
automatically accepting or rejecting the identity of the claimed
speaker. Speaker identification can be used in criminal investiga-
tions to determine the suspected persons who uttered the voice
recorded at the scene of the crime. Speaker identification can also
be used in civil cases or for the media. Speaker verification is
heavily used in security access to services via a telephone,
including home shopping, home banking transactions using a
telephone network, security control for confidential information
areas, remote access to computers, and many telecommunication
services (Furui, 1991). Based on the text to be spoken, speaker
recognition is grouped into text-dependent and text-independent
cases. In the text-dependent case, speaker recognition requires the
speaker to utter speech for the same text in both training and
testing; on the other hand, in the text-independent case, speaker
recognition does not depend on the text being spoken.

In this work, we address the issue of enhancing the low
performance of text-independent speaker identification in
shouted talking environments by proposing, implementing, and
testing a novel classifier. This classifier is called Third-Order
Hidden Markov Models (HMM3s).

2. Motivation and prior work

The areas of speech recognition and speaker recognition have
received considerable interest in the literature. Most studies,
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however, have focused on studying the two areas in neutral
talking environments (Furui, 1991; Farrell et al., 1994; Yu et al.,
1995; Reynolds, 1995). In fact, these two areas have received less
attention in stressful talking environments (Cummings and
Clements, 1995; Bou-Ghazale and Hansen, 2000; Zhou et al.,
2001; Chen, 1988) (especially shouted (Chen, 1988; Raja and
Dandapat, 2010; Zhang and Hansen, 2007; Shahin, 2005, 2006,
2008, 2010)).

Chen (1988) studied talker-stress-induced intraword variability
and an algorithm that pays off for the systematic changes observed
based on hidden Markov models (HMMs) trained by speech tokens
under diverse talking conditions. Raja and Dandapat (2010)
studied speaker recognition under stressed conditions to improve
the declined performance under such conditions. They used four
different stressed conditions of SUSAS database. These conditions
are neutral, angry, Lombard, and question. Their study (Raja and
Dandapat, 2010) showed that the least speaker identification
performance took place when speakers talk in angry talking
environments. Angry talking environments are used as alterna-
tives to shouted talking environments since they cannot be
entirely separated from shouted talking environments in our real
life (Shahin, 2005, 2006, 2008, 2010). Zhang and Hansen, (2007)
reported on the analysis of characteristics of speech in five
different vocal modes: whispered, soft, neutral, loud, and shouted;
and to recognize discriminating features of speech modes. In four
of his earlier studies (Shahin, 2005, 2006, 2008, 2010), Shahin
focused on enhancing speaker identification performance in
shouted talking environments based on each of Second-Order
Hidden Markov Models (HMM2s) (Shahin, 2005), Second-Order
Circular Hidden Markov Models (CHMM2s) (Shahin, 2006), Supra-
segmental Hidden Markov Models (SPHMMs) (Shahin, 2008), and
Second-Order Circular Suprasegmental Hidden Markov Models
(CSPHMM2s) (Shahin, 2010). The achieved speaker identification
performance in such talking environments is 59.0%, 72.0%, 75.0%,
and 83.4% based on HMM2s, CHMM2s, SPHMMs, and CSPHMM2s,
respectively (Shahin, 2005, 2006, 2008, 2010).

HMMs are powerful models in optimizing the parameters that
have been used to model speech signals. This optimization reduces
the computational complexity in the decoding procedure and
enhances the recognition accuracy (Huang et al., 1990). Most of
the works carried out in the fields of speech recognition and
speaker recognition based on HMMs have been conducted using
First-Order Hidden Markov Models (HMM1s) (Chen, 1988), (Juang
and Rabiner, 1991; Dai, 1995; Rabiner, 1989). In HMM1s, the state-
transition probability at time tþ1 depends only on the state of the
Markov chain at time t. These models yield extremely high speaker
recognition performance in neutral talking environments (Chen,
1988; Shahin, 2005, 2010); however, the models give very low
performance in shouted talking environments (Chen, 1988;
Shahin, 2005, 2010).

Mari et al. (1996), (1997) proposed, applied, and tested HMM2s
in the training and testing phases of a connected word recognition
system under the neutral talking condition. In such models, the
underlying state sequence is a second-order Markov chain where
the state-transition probability at time tþ1 depends on the states
of the Markov chain at times t and t�1. Shahin (2005) exploited
these models in the training and testing phases of isolated-word
text-dependent speaker identification systems under each of the
neutral and shouted talking conditions. Based on his work and
using HMM2s, Shahin (2005) achieved higher speaker identifica-
tion performance than that using HMM1s under the shouted
talking condition. Hadar and Messer (2009) proposed a simple
method based on transforming any high order HMM (including
models in which the state sequence and observation dependency
are of distinct orders) into an equivalent first order HMM. Chatzis
(2013) focused in one of his works on designing infinite-order

HMMs to learn from data with sequential dynamics. These models
usually depend on the postulation of first-order Markovian
dependencies between the consecutive label values y. There are
two major advantages of the designed models over the other
approaches. The first advantage is that these models allow for
capturing very long and complex temporal dependencies. The
second advantage is that the models employ a margin maximiza-
tion paradigm to perform model training, which gives a convex
optimization scheme (Chatzis, 2013).

In this work, we focus on further improving (compared to
HMM2s) the performance of text-independent speaker identification
in shouted talking environments by proposing, implementing, and
evaluating novel models called HMM3s. In these new models, the
underlying state sequence is a third-order Markov chain where the
state-transition probability at time tþ1 depends on the states of the
Markov chain at times t, t�1, and t�2. Speaker recognition in
shouted talking environments can be used in criminal investigations
to identify the suspected persons who uttered shouted voice during
crimes and in the applications of talking condition recognition.
Talking condition recognition can be used in medical applications,
telecommunications, law enforcement, and military applications
(Hansen et al., 2000). The proposed models have been assessed on
our collected speech database. Our approach in this work is different
from that in the work of reference (Hadar and Messer, 2009). In the
current work, our approach does not depend on transforming
HMM3s into equivalent HMM1s. Our present work does not also
depend on designing HMM3s that learn from data with sequential
dynamics as in the work of reference (Chatzis, 2013).

The remainder of this paper is organized as follows: Brief
overview of hidden Markov models is given in Section 3. The
details of the proposed third-order hidden Markov models are
covered in Section 4. Section 5 describes the collected speech
database used in this work and the extraction of features. Section 6
discusses speaker identification algorithm based on HMM3s and
the experiments. Section 7 demonstrates the results obtained in
the present work and their discussion. Finally, concluding remarks
are presented in Section 8.

3. Brief overview of hidden Markov models

HMMs can be described as being in one of the N different
states: 1, 2, 3, …, N, at any discrete time instant t. The individual
states are denoted as (Huang et al., 1990; Juang and Rabiner, 1991),

s¼ fs1; s2; s3;…; sNg

which are generators of a state sequence qt, where at any time t:
q¼{q1, q2, …, qT}, T is the length or duration of an observation
sequence O and is equal to the total number of frames of a speech
signal.

At any discrete time t, the model is in a state qt. At the discrete
time t, the model makes a random transition to a state qtþ1.
The state transition probability matrix A determines the prob-
ability of the next transition between states,

A¼ ½aij� i; j¼ 1;2;…;N

where aij denotes the transition probability from a state i to a state j.
The first state s1 is randomly chosen according to the initial

state probability,

π ¼ ½πi� ¼ Prob ðq1 ¼ siÞ

The states that are unobservable directly are observable via a
sequence of outputs or an observation sequence given as,

O¼ fO1;O2;O3; :::;OT g
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