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ABSTRACT

In this paper, an integrated data validation/reconstruction and fault diagnosis approach is proposed for
critical infrastructure systems. The proposed methodology is implemented in a two-stage approach. In
the first stage, sensor communication faults are detected and corrected, in order to facilitate a reliable
dataset to perform system fault diagnosis in the second stage. On the one hand, sensor validation and
reconstruction are based on the combined use of spatial and time series models. Spatial models take
advantage of the (mass-balance) relation between different variables in the system, whilst time series
models take advantage of the temporal redundancy of the measured variables by means of Holt-Winters
time series models. On the other hand, fault diagnosis is based on the learning-in-model-space approach
that is implemented by fitting a series of models using a series of signal segments selected with a sliding
window. In this way, each signal segment can be represented by one model. To rigorously measure the
‘distance’ between models, the distance in the model space is defined. The deterministic reservoir
computing approach is used to approximate a model with the input-output dynamics that exploits
spatial-temporal correlations existing in the original data. Finally, the proposed approach is successfully

applied to the Barcelona water network.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Critical infrastructure systems (CIS), including water, gas or
electricity networks, are complex large-scale systems, geographi-
cally distributed and decentralized with a hierarchical structure,
requiring highly sophisticated supervisory and real-time control
(RTC) schemes to ensure high performance achievement and
maintenance when conditions are non-favourable (Schiitze et al.,
2004; Marinaki and Papageorgiou, 2005) due to e.g. sensor and
actuator malfunctions (faults). Each sub-system composing the CIS
is constituted of a large number of elements with time-varying
behaviour, having many different operating modes and subject to
changes due to operational constraints. To deal with this problem,
the use of an on-line fault diagnosis system able to detect such
faults and correct them by activating different kinds of techniques e.
g. data validation/reconstruction of sensor faults is desirable. This
will prevent the RTC from being stopped every time that a fault
appears, which is one of the main reasons why global RTC is not
widely applied in the world (Schiitze et al., 2004). Furthermore, the
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fault diagnosis process intends to identify which fault is causing the
monitored events, including e.g. hardware and software faults.

Generally, two main strategies are available in the literature
when addressing the fault diagnosis problem, which are hardware
redundancy (preferred in critical systems) based on the use of
extra sensors and actuators, and analytical redundancy, based on
the use of software sensors or models combining information
gathered by the sensor measurements or using other actuators to
compensate the faulty ones. Nevertheless, the use of hardware
redundancy in large-scale systems is very expensive and increases
the number of maintenance and calibration operations, which calls
for the use of combined hardware and analytical redundancy
approaches in CIS (Carrozza et al., 2008). The capability to detect
and isolate faults in these systems is important to keep their
integrity safe. This problem has been targeted by numerous
researchers from many different points of view, as overviewed in
the compilation of techniques included in Venkatasubramanian
et al. (2003a-c), and more recently in Ding (2008).

In this paper, an innovative framework that investigates the
fault diagnosis problems in the model space instead of the data/
signal space is developed. This fault diagnosis framework is
integrated with a data validation/reconstruction methodology
introduced in Quevedo et al. (2010a). ‘Learning in model space’
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(Chen et al,, 2014) is implemented by fitting a series of ‘approxi-
mated’ models using a series of signal segments selected with a
sliding window, and then apply the learning techniques to
discriminate and isolate fault models from healthy models. Reser-
voir computing is chosen as an example to approximate the signal
segments. Dynamic reservoirs of reservoir models have been
shown to be ‘generic’ in the sense that they are able to represent
a wide variety of dynamical features of the input driven signals, so
that given a task at hand only the linear readout on top of reservoir
needs to be retrained (Luko3evicius and Jaeger, 2009). Hence, in
the formulation the underlying dynamic reservoir will be the same
throughout the signal - the differences in the signal characteristics
at different times will be captured solely by the linear readout
models and will be quantified in the function space of readout
models.

Here it is assumed that, for some sufficiently long initial period,
the system is in a ‘normal/healthy’ regime so that when a fault
occurs the readout models characterizing the fault will be suffi-
ciently ‘distinct’ from the normal ones. A variety of novelty/
anomaly detection techniques can be used for the purposes of
detection of deviations from the ‘normal’ regime. In this contribu-
tion, support vector machines (SVMs) in the readout model space
are used, so new faults occurring will be captured by the algorithm
proposed operating in the readout model space.

The contributions of this paper are listed as follows:

® First, data validation and reconstruction techniques are inte-
grated with learning in the model space for effective fault
diagnosis.

® Second, SVMs are used in the model space for fault detection/
isolation.

Finally, the proposed methodologies are applied to the Barcelona
water network as a case study in this paper.

2. Data validation/reconstruction approach

In systems like CIS, a telecontrol system is acquiring, storing
and validating data gathered from different kinds of sensors every
given sampling time to accurately real-time monitor the whole
system. In this process, problems in the communication system,
e.g. between sensors and data loggers or in the telecontrol system
itself, are frequent and produce data loss which may be of great
concern in order to have valid historic records. When this is
occurring, lost data should be replaced by a set of forecasted data
which should be a representative of the data lost. Another
common problem in CIS is caused by the unreliable sensors, which
may be affected by e.g. offset, drift, freezing in the measurements
(Kanakoudis and Tolikas, 2001; Kanakoudis and Tsitsifli, 2011;
Tsitsifli et al., 2011). These unreliable data should also be detected
and replaced by forecasted data, since it may be used for system
management tasks e.g. maintenance, planning, investment plans,
billing, security and operational control (Quevedo et al., 2010a)
and system fault detection and isolation (Fig. 1).

Different types of data validation methods with distinct
degrees of complexity may be considered according to the avail-
able system knowledge. Generally, two types of methods can be
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Fig. 1. Raw data validation/reconstruction and system FDI approach.
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considered, one for elementary ‘low-level’ signal based methods
and another for ‘high-level’ model-based methods. The first class
use simple heuristics and limited statistical information from the
sensors (Burnell, 2003; Jorgensen et al., 1998) and is typically
based on checking either signal values or variations, whilst the
second class uses models for consistency-checking of the sensor
data (Tsang, 2003). Here, the first class of data validation methods
has been used to deal with sensor communication faults.

2.1. Data validation process

The data validation process is inspirited in the Spanish AENOR-
UNE norm 500540 (Quevedo et al., 2010a). The methodology
applies a set of consecutive validation tests to a given dataset
(Fig. 2), to finally assign a certain quality level depending on the
tests passed.

In a system like the one considered here, and in telecontrolled
systems in general, one of the most common faults occurring is
sensor communication fault. This type of fault is related with level
zero of the sensor validation methodology in Quevedo et al.
(2010a). This level checks whether the data is properly recorded,
assuming that data acquisition systems sample data at a certain
fixed rate. Hence, this level allows detecting problems in the data
acquisition or communication system.

Here, communication faults are considered as the faults affect-
ing the sensor of the telecontrol system, and data validation and
reconstruction procedures are used as a prefilter to estimate the
missing data when this type of faults is occurring.

2.2. Data reconstruction process

The output of the data validation process (Fig. 2) is used to
identify the invalidated data that should be reconstructed. Spatial
and time series (TS) models (Levels 4 and 5 in Fig. 2) are used for
this purpose, depending on the performance of each model.

On the one hand, spatial models (SM) take advantage of the
relation between different variables emplaced in the system. For
example, in hydraulic systems, this relation is generally obtained
from the mass balance model of the element relating the different
measured variables involved, which states that the incoming and
outcoming flows in a tank subsystem must be equal

Rsm(k) = x(k— 1)+ At(qip(k— 1) — oy (k— 1)) (1)

where Xg is the spatial model tank volume estimation, x is the
measured tank volume, g;, is the incoming tank flow, q,,, is the
outcoming tank flow and At is the sampling time. From this
equation, the volume estimation for a particular tank subsystem
may be stated. Estimation of other variables (e.g. §;,, ;) Mmay be
obtained from algebraic manipulation of the latter.

However, real elements include uncertainty (due to e.g. unex-
pected behaviour of the plant, inaccuracy of the model) which may
lead to the non-satisfaction of the mass balance in the element
considered. Hence, consistency of the data collected by a certain
sensor with its spatial model (Quevedo et al., 2010b), i.e. the
correlation between data coming from spatially related sensors,
may be maintained. For example, the data of the flow meters
located in different points of the same pipe in a transport water
network allows for checking the reliability of the sensor set and
performing the corresponding correction, e.g. by using a linear
regression model of input-output measured data in the pipe
(which is ideally the identity function). In the case of the tank
level estimation (1), this correction is introduced as

Xc(k) = axsy(k)+b 2

where X. is the corrected estimation of the volume using regres-
sion model parameters [a, b] obtained with the training dataset
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