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a b s t r a c t

This article studies if machine faults can be effectively determined in a reduced dimensional space. When
faults occur in machines, machine vibration signals will deviate from its normal signal pattern. Such
changes can be reflected in the features constructed from the machine signals. In this article, 13-
dimension feature data set is constructed to represent different health conditions of machines, and
unsupervised learning algorithms are introduced to deal with feature data sets for feature extraction and
fault classification. A weighted local and global regressive mapping (WLGRM) algorithm is proposed for
machine fault classification. Two synthetic fault data sets and two experimental data sets are employed
to validate the effectiveness of the proposed approach. Comparative analysis with other unsupervised
learning algorithms, such as local and global regressive mapping, locality preserving projection, Isomap,
principal component analysis, and Sammon mapping, are reported. The results show that different
machine faults can be classified, the degree of fault severity can be captured, and WLGRM can achieve
better performance than other algorithms in most cases of machine fault classification.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Machine faults are behaviors in machines that do not corre-
spond to well-defined notion of its normal behaviors. Generally, it
is easier and less costly to obtain behavior data from a machine
that is functioning normally than from a machine that is known to
be faulty. Machine fault data are scarce because they usually have
to be collected from seeded fault experiments, data log of anomaly
behaviors, simulations and theoretical calculations, etc. Indeed,
getting a labeled set of machine fault data is difficult. Based on the
types and availability of labeled data, techniques for machine fault
classification can be categorized into supervised and unsupervised
approaches (Chandola et al., 2009). When the priori information
of machine normal behaviors and fault conditions is available,
a supervised method can be used to distinguish the normal and
abnormal classes; when no prior information is available, an
unsupervised method is effective for detecting the anomalies.
The unsupervised techniques take the priority when there is little

or even no known information about the anomaly, which happens
often in reality.

When faults occur in machines, faults will cause the machinery
signals to deviate from the normal ones. Sensor-based technolo-
gies are successfully used to indicate the health conditions of
machines. Vibration signals are widely used to diagnose the faults
in bearings, induction motors, gearboxes, etc. (Yan and Gao, 2009;
Jin et al., 2012; Chow and Hai, 2004; Miao et al., 2011). Wang
(2007) developed a model to predict the wear in aircraft engine
using oil-based information. Acoustic noise (sound pressure level)
was a good precursor to indicate new and degraded fans (Oh et al.,
2012). Acoustic emission signals were used to detect gear fault and
predict the tool wear condition (Li and He, 2012; Zhou et al., 2011).
Motor current signals were used to diagnosis of faults in induction
motors (Casimir et al., 2006; Lebaroud and Clerc, 2009; Hu et al.,
2011; Riera-Guasp et al., 2012; Weber et al., 2012). Among these
afore-mentioned methods, the vibration signal analysis is the most
reliable, effective, powerful, popular method for machine fault
diagnosis.

Generally, many approaches based on vibration signals can be
taken for machine fault diagnosis, such as time domain analysis
(Jin et al., 2012; Martin and Honarvar, 1995; Heng and Nor, 1998),
frequency domain analysis (Miao et al., 2011; Courrech, 2000) or
time–frequency domain analysis (Goumas et al., 2001; Yan and
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Gao, 2009; Chow and Hai, 2004; He et al., 2009). Pattern recogni-
tion technique, neural networks, and neuro-fuzzy approach using
features constructed from machine signals are also being devel-
oped for machine fault diagnosis (Tse et al., 1996; Jin and Chow,
2013; Li et al., 2000; Wang et al., 2013; Wu and Chow, 2004; Zio
and Gola, 2009; Zio and Popescu, 2007, Jin et al., 2014, Zhao et al.,
2014). This paper transforms machine fault classification into a
pattern classification way. A 13-dimensional feature data set was
constructed from vibration signals to represent different health
conditions of machines. Then, unsupervised learning algorithms,
which project high-dimension data set into a low-dimensional
data set by reserving the original data topology and characteristics,
are used for fault clustering and classification.

Many unsupervised dimensionality reduction methods have
been proposed for machine fault diagnosis. Typical methods
include principle component analysis (PCA) and local preserving
projection (LPP). Georgoulas et al. (2013) propose a PCA based
fault diagnosis system, which is to detect the broken rotor bar in
asynchronous machine. However, PCA is a global method; it
cannot grasp the intrinsic local information in the data. Yu (2011,
2012a, 2012b) utilize LPP to extract features from vibration signals
for bearing fault prognosis, which can overcome the drawback of
PCA by preserving the local structure of data manifold. Recently,
Yang et al. (2010) propose a novel manifold learning framework,
namely, local and global regressive mapping (LGRM), which
employs local regression models to grasp the manifold structure
and a global regression term to learn the global projection matrix.
As a result, both PCA and LPP can be the special cases in LGRM.
In this work, we propose a new manifold learning method, which
aims to reduce the bias reduction of LGRM as well as grasp the
local geometrical structure, and apply it for machine fault
classification.

The contribution of this paper can be summarized as: (1) Unsu-
pervised learning algorithms, which are proposed in pattern
recognition, are extended for machine fault classification; (2) a
weighted version of LGRM algorithm, referred as WLGRM, is
proposed for machine fault classification, in which the bias
reduction of LGRM is reduced; (3) synthetic fault data sets and
experimental data sets are employed to validate the effectiveness
of the proposed scheme for machine fault classification; (4) results
show that different machine faults can be classified successfully,
and the degree of fault severity can also be captured.

The rest of this paper is organized as follows. In Section 2 the
basic concepts of PCA, LPP, and LGRM algorithm are briefly
reviewed, and the WLGRM is introduced. The approach for
machine fault classification is explained in detail in Section 3.
Section 4 presents the four data sets (two simulated machine data
sets and two experimental data sets) that are analyzed in the
article. The effectiveness of proposed scheme for machine fault
classification and the performance of six unsupervised learning
algorithms based on these data sets are reported in Section 5.
Finally, conclusions are drawn in Section 6.

2. Theoretical background

Suppose there is a set of N D-dimensional samples
X ¼ fx1; x2;…; xNg, and each xi belongs to one of c classes
fX1;X2;…;Xcg.

2.1. Principal component analysis and locality preserving projection

PCA, also known as Karhunen–Loeve transform, aims to find a
linear transformation matrix, WPCAAℝD�d, mapping the original
D-dimensional space onto a reduced d-dimensional feature space
with dooD, for which the scatter of all projected samples is

maximized (Martinez and Kak, 2001). The new mapped feature
vectors yiAℝd are defined as below

yi ¼WT
PCAxi ð1Þ

where i¼ 1;2;…;N, and WPCA is a matrix with orthonormal
columns.

If the total scatter matrix, ST, is defined as

ST ¼ ∑
N

i ¼ 1
ðxi�μÞðxi�μÞT ð2Þ

μ¼ 1
N

∑
N

i ¼ 1
xi ð3Þ

The scatter of the transformed feature vectors by applying the
linear transformation WT

PCA is WT
PCASTWPCA. The objective of PCA is

to find the optimal projection matrix dWPCA satisfyingdWPCA ¼ argmaxWPCAW
T
PCASTWPCA

¼ ½w1 w2 ⋯ wd� ð4Þ
where fwiji¼ 1;2;…; dg is the set of D-dimensional eigenvectors of
ST corresponding to the d largest eigenvalues. One disadvantage of
the PCA is that the optimal projection matrix is maximized not
only by between-class scatter matrix that is useful for classifica-
tion, but also by the within-class matrix that is the unwanted
information for classification purpose (Martinez and Kak, 2001).

LPP is an alternative to PCA, aims to find a linear transforma-
tion, WLPPAℝD�d, that optimally preserves local neighborhood
information and intrinsic geometry of the original data set (He
et al., 2005). The criterion of LPP is to minimize the following
objective function by finding an optimal map under certain
constraints (He and Niyogi, 2003)

∑
ij
ðyi�yjÞ2Sij ð5Þ

The similarity matrix S with Sij is introduced to define the local
neighborhood information as follows:

Sij ¼
expð� Jxi�xj J2=tÞ; Jxi�xj J2oε

0 otherwise

(
ð6Þ

where tAℝ, is a parameter; ε is a small positive value (Belkin and
Niyogi, 2001).

Suppose a is a transformation vector, that is yT ¼ aTX. By simple
algebra formulation and imposing a constraint yTDy¼ 1
(aTXDXTa¼ 1), the minimization problem reduces to finding

argminaTXDXT a ¼ 1a
TXLXTa ð7Þ

where L¼D�S is the Laplacian matrix, D is a diagonal matrix
whose entries are row (or column, since S is symmetric) sums of S,
Dii ¼∑jSij.

The transformation vector that minimizes Eq. (7) is given by
the minimum eigenvalues solutions to the generalized eigenvalue
problem

XLXTa¼ λXDXTa ð8Þ
Let the column vectors of a1; a2;…; ad be the solutions of Eq. (8),

ordered by their eigenvalues as follows, λ1oλ2o⋯oλd. Thus, the
mapping is as follows.

yi ¼WT
LPPxi; WLPP ¼ ½a1 a2 ⋯ ad� ð9Þ

2.2. Local and global regressive mapping

The objective of the LGRM algorithm is to find a low-
dimensional representation Y of the data X as well as the projec-
tion matrix WLGRM simultaneous (Yang et al., 2010). In LGRM, a
local clique Xi ¼ fxi; xi1;…; xik�1g is first constructed for each data
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