
Smart sensor/actuator node reprogramming in changing environments
using a neural network model

Francisco Ortega-Zamorano a,n, José M. Jerez a, José L. Subirats a, Ignacio Molina b,
Leonardo Franco a

a Department of Computer Science, E.T.S.I. Informatica, University of Malaga, Bulevar Louis Pasteur, 35, 29071 Malaga, Spain
b Max Planck Institute, Munich, Germany

a r t i c l e i n f o

Article history:
Received 17 September 2013
Received in revised form
23 December 2013
Accepted 9 January 2014
Available online 1 February 2014

Keywords:
Constructive Neural Networks
Microcontroller
Arduino

a b s t r a c t

The techniques currently developed for updating software in sensor nodes located in changing environments
require usually the use of reprogramming procedures, which clearly increments the costs in terms of time
and energy consumption. This work presents an alternative to the traditional reprogramming approach
based on an on-chip learning scheme in order to adapt the node behaviour to the environment conditions.
The proposed learning scheme is based on C-Mantec, a novel constructive neural network algorithm
especially suitable for microcontroller implementations as it generates very compact size architectures. The
Arduino UNO board was selected to implement this learning algorithm as it is a popular, economic and
efficient open source single-board microcontroller. C-Mantec has been successfully implemented in a
microcontroller board by adapting it in order to overcome the limitations imposed by the limited resources of
memory and computing speed of the hardware device. Also, this work brings an in-depth analysis of the
solutions adopted to overcome hardware resource limitations in the learning algorithm implementation (e.g.,
data type), together with an efficiency assessment of this approach when the algorithm is tested on a set of
circuit design benchmark functions. Finally, the utility, efficiency and versatility of the system is tested in
three different-nature case studies in which the environmental conditions change its behaviour over time.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sensors (or detectors) are devices that permit the measurement
of chemical or physical variables, transforming them into electrical
signals, in order to interpret the signals from various sensors and
send the sensed data or make a decision according to them.
Microcontroller boards are an economic, small and flexible solution,
and thus are the most common controller used in a sensor node, also
known as a Mote, commonly used in Wireless sensor network (Yick
et al., 2008; Sengupta et al., 2013), but also used in other important
technologies such as Embedded systems (Marwedel, 2006;
Mamdoohi et al., 2012) and Real-time systems (Kopetz, 1997;
Wang et al., 2010). Motes are nowadays widely employed in all kind
of industrial applications, in several of them, the problem requires an
action upon the environmental conditions, in this case a sensor/
actuator node is required.

In cases when the environmental conditions evolve over time, the
original sensor/actuator programming can lead to incorrect decisions,
and thus it is necessary to change or adapt the decision-making

process to the new conditions (Sayed-Mouchaweh and Lughofer,
2012). The traditional option to solve this problem has been to send
the sensed data to a central unit, where a person interprets the data
and reprogram the microcontroller with the new set of rules (Han
et al., 2005; Wang et al., 2006; Shaikh et al., 2010). Different
reprogramming techniques have been proposed as a way of dyna-
mically changing the behaviour of the sensors without having to
manually reprogram them, because traditional reprogramming
requires in most cases the interruption of the process for loading
the new binary code, with the consequent loss of time and energy,
involved in the communication process to the central unit (Rassam
et al., 2013; Aiello et al., 2011). A first step towards reducing the
previous effects has been to incorporate machine learning systems in
the decision-making process, automating the response of the micro-
controller without interrupting its execution and sending just a small
fraction of code to the microcontroller (Urda et al., 2012; Canete et al.,
2012; Farooq et al., 2010). However, recent advances in the comput-
ing power of sensors permit the inclusion of learning systems in the
microcontroller (“on-chip” learning), adapting the sensor/actuator
behaviour dynamically according to the sensed data (Aleksendrić
et al., 2012; Mahmoud et al., 2013).

Artificial Neural Networks (ANNs) (Haykin, 1994) are a kind of
machine learning models, inspired on the functioning of the brain,

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

0952-1976/$ - see front matter & 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engappai.2014.01.006

n Corresponding author. Tel.: þ34 952 13 28 47; fax: þ34 952 131 397.
E-mail addresses: fortega@lcc.uma.es,

FOZamorano@gmail.com (F. Ortega-Zamorano).

Engineering Applications of Artificial Intelligence 30 (2014) 179–188

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2014.01.006
http://dx.doi.org/10.1016/j.engappai.2014.01.006
http://dx.doi.org/10.1016/j.engappai.2014.01.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.01.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2014.01.006&domain=pdf
mailto:fortega@lcc.uma.es
mailto:FOZamorano@gmail.com
http://dx.doi.org/10.1016/j.engappai.2014.01.006


that can be utilised in clustering and classification problems,
having been applied successfully in several fields, including
pattern recognition (Dhanalakshmi et al., 2011), stock market
prediction (Park and Shin, 2013), control tasks (Zhai and Yu,
2009), medical diagnosis and prognosis (Kodogiannis et al.,
2007), and so on. Despite years of research in the field of ANN,
selecting a proper architecture for a given problem remains a
difficult task (Gómez et al., 2009; Hunter et al., 2012; Lakshmi and
Subadra, 2013), and several strategies have been proposed for
solving or alleviating this issue. In particular, Constructive Neural
Networks (CoNNs) offer the possibility of generating networks
that grows as input information is received, matching the com-
plexity of the data (Franco et al., 2009). Moreover, the training
procedure in CoNN, considered a computationally expensive
problem in standard feedforward neural networks, can be done
on-line and relatively fast. C-Mantec is a recently introduced CoNN
algorithm that implements competition between neurons, also
incorporating a built-in filtering scheme to avoid overfitting
problems. These two characteristics permit the algorithm to
generate compact neural architectures with very good general-
isation capabilities, making the algorithm suitable for its applica-
tion to devices with limited resources like microcontrollers. The
main limitations of these devices are memory size and computing
speed, and thus an efficient implementation of the algorithm is
needed. Despite the existence of alternative evolving models
(Lughofer, 2011; Angelov, 2010; Huang et al., 2005), C-Mantec
has been selected based mainly on the three following features:
dynamic generation of compact architectures, good prediction
ability and robustness to parameter setting.

In the present work, we have fully implemented the C-Mantec
(Subirats et al., 2012) constructive neural network model in an
Arduino UNO board, including the whole learning process to
implement the automatic reprogramming process for decision-
making into the sensor/actuator in changing environments, avoid-
ing communication to other devices.

The Arduino UNO board was used (Oxer and Blemings, 2009) as
it is a popular, economic and efficient open source single-board
microcontroller that allows easy project development (Lian et al.,
2013; Cela et al., 2013; Ortega-Zamorano et al., 2013; Kornuta et al.,
2013). We have also proposed three case studies of different nature
which require reprogramming to the decision-making process,
demonstrating that the time involved in the sensor reprogramming
is significantly lower than in the traditional case, without the need
to send any information to another device (as a control unit), saving
a large fraction of the required energy resources.

The paper is structured as follows: first, we briefly describe in
Section 2 the C-Mantec constructive neural network algorithm
used, followed by a description of the Arduino UNO microcon-
troller board in Section 3. Section 4 includes the details of the
implementation with the results obtained shown in Section 5.
Thereafter, three case studies are evaluated in Section 6, checking
the efficiency of the system in them, to finally extract the
conclusions in Section 7.

2. C-Mantec, constructive neural network algorithm

C-Mantec (Subirats et al., 2012) (Competitive Majority Network
Trained by Error Correction) is a novel neural network constructive
algorithm that utilises competition between neurons and a modified
perceptron learning rule (thermal perceptron Frean, 1990) to build
single hidden layer compact architectures with good prediction
capabilities for supervised classification problems. As a CoNN algo-
rithm, C-Mantec generates the network topology on-line during the
learning phase, avoiding the complex problem of selecting an ade-
quate neural architecture. The novelty of C-Mantec in comparison to

previous proposed constructive algorithms is that the neurons in the
single hidden layer compete for learning the incoming data, and this
process permits the creation of very compact neural architectures. The
binary activation state (S) of the neurons in the hidden layer depends
on N input signals, ψi, and on the actual value of the N synaptic
weights (ωi) and bias (b) as follows:

S¼
1ðONÞ if hZ0
0ðOFFÞ otherwise

(
ð1Þ

where h is the synaptic potential of the neuron defined as

h¼ ∑
N

i ¼ 0
ωiψ i ð2Þ

In the thermal perceptron rule, the modification of the synaptic
weights, Δωi, is done on-line (after the presentation of a single input
pattern) according to the following equation:

Δωi ¼ ðt�SÞψ iT fac; ð3Þ
where t is the target value of the presented input, and ψ represents
the value of input unit i connected to the output by weight ωi. The
difference in the standard perceptron learning rule is that the thermal
perceptron incorporates the Tfac factor. This factor, whose value is
computed as shown in Eq. (4), depends on the value of the synaptic
potential and on an artificially introduced temperature (T).

Tfac ¼
T
T0

e�jhj=T ; ð4Þ

The value of T decreases as the learning process advances
according to Eq. (5), similar to a simulated annealing process.

T ¼ T0 � 1� I
Imax

� �
; ð5Þ

where I is a cycle counter that defines an iteration of the algorithm
on one learning cycle, and Imax is the maximum number of
iterations allowed. One learning cycle of the algorithm is the
process that starts when a random chosen pattern is presented to
the network and finishes after checking that the output of the
network is equal to the target for this pattern, or when a chosen
neuron (the neuron with largest Tfac value or a new added neuron)
modifies its synaptic weights to learn the actual presented pattern.

The C-Mantec algorithm has three parameters to be set at the
time of starting the learning procedure, and several experiments
have shown the robustness of the algorithm that operates fairly
well in a wide range of parameter values. The algorithm has the
following three parameters:

� Imax: Maximum number of learning iterations allowed for each
neuron in one learning cycle.

� gfac: Growing factor that determines when to stop a learning
cycle and includes a new neuron in the hidden layer.

� ϕ: Determines in which case an input example is considered as
noise and removed from the training dataset according to the
following condition:

deleteðxiÞ∣NLT Z ðμþϕsÞ; ð6Þ

where xi represents an input pattern, N is the total number of
patterns in the dataset, NLT is the number of times that pattern xi
has been presented to the network on the current learning cycle,
and where μ and s correspond to the mean and variance of the
distribution for all patterns on the number of times that the
algorithm has tried to learn each pattern in a learning cycle. The
learning procedure starts with one neuron present in the single
hidden layer of the architecture and an output neuron that
computes the majority function of the responses of the hidden

F. Ortega-Zamorano et al. / Engineering Applications of Artificial Intelligence 30 (2014) 179–188180



Download	English	Version:

https://daneshyari.com/en/article/380624

Download	Persian	Version:

https://daneshyari.com/article/380624

Daneshyari.com

https://daneshyari.com/en/article/380624
https://daneshyari.com/article/380624
https://daneshyari.com/

