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a b s t r a c t

Neural networks have been successfully used to model nonlinear dynamic systems. However, when a
static neural network model is used in system fault detection and the model prediction error is used as
the residual, the residual is insensitive to the fault if the neural network used is in dependent mode. This
paper proposed the use of a radial basis function network in independent mode as the system model for
fault detection, and it was found that the residual is sensitive to the fault. To enhance the signal to noise
ratio of the detection the recursive orthogonal least squares algorithm is employed to train the network
weights. Another radial basis function network is used to isolate fault using the information in the
residual signal. The developed method is applied to a benchmark simulation model of the proton
exchange membrane fuel cell stacks developed at the Michigan University. One component fault, one
actuator fault and three sensor faults were simulated on the benchmark model. The simulation results
show that the developed approach is able to detect and isolate the faults to a fault size of 710% of
nominal values. These results are promising and indicate the potential of the method to be applied to the
real world of fuel cell stacks for dynamic monitoring and reliable operations.

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

If faults occurred in a process plant, they will affect the produc-
tivity, quality, safety and performance of the control systems of the
plant. Therefore, early detection of possible faults would minimize
the downtime, increase the safety of plant operations, prevent
damages to the equipment, minimize the operation cost and also
the maintenance. Fault detection and isolation (FDI) for dynamic
control systems of nonlinear plants has become an important and
challenging task in many engineering applications and continues to
be an active area of research in the control environment (Hwang
et al., 2010).

In process engineering, most plants have nonlinear dynamics in
nature (Basseville, 1988) and may also be multivariable and
complex, the observer-based FDI methods (Frank, 1990;
Isermann, 1984; Patton, 1994) would therefore be very difficult
to apply to these systems. Researchers have been tuned to some
other alternatives and one of which is the artificial intelligent
method. For example, Frank and Koppen-Seliger (1997) studied
fuzzy logic and neural network applications for fault diagnosis.
They used a dependent neural network for residual generation and
fuzzy logic for residual evaluation. Simeón et al. (2010) used

classical multivariable statistical techniques for FDI of several
manufacturing and process plants. Ng and Srinivasan (2010) used
the multi-agent method in which principle component analysis
(PCA), self-organizing map (SOP) and Bayesian network were
combined to do FDI for the Tennessee Eastman process and also
distillation unit to classify the temperature change and distur-
bance during start-up. Bayesian network was also used as a
classifier to do fault diagnosis in the Tennessee Eastman process
by Verron et al. (2010), where a fault database was constructed.
Three kinds of fault are analyzed in terms of unit step and random
signal excitation. Subrahmanya and Shin (2013) used recurrent
neural network (RNN) to distinguish faults occurring in actuator,
component and sensors. In recent years, Polycarpou and Helmicki
(1995) proposed a framework to estimate faults occurring in the
system dynamics, in which an estimator was added to the state
space model. The error between the model and the plant outputs
was used to update the estimator that is used to estimate the fault.
The RBF network has been used as the estimator in their work and
the Levenberg–Marquart algorithm by Chong and Zak (2013) as an
updating algorithm. This method has been widely recommended
for further research, but its drawback is that the difficulty of
developing an accurate nonlinear state space model for the plant
makes it difficult for real applications.

Patton et al. (1994) proposed an approach for detecting and
isolating faults in a nonlinear dynamic process using neural net-
works. Firstly, a multi-layer perceptron network was trained to
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predict the future system states, then the residual was generated
using the differences between the actual and predicted states.
Secondly, another neural network was used as a classifier to isolate
faults from these state prediction errors. However, this method
used the neural network model in its so-called dependent mode
(see definition given in Narendra and Parthasarathy (1990)), i.e.
the past state of the process was used as a part of the network
input. In this way, the network model was trained using the
nominal process data for state prediction. Then, when a fault
occurred, the fault would cause the process state to be contami-
nated (the value was affected). This contaminated process state
was then fed into the network model, the predicted state would
tend to the real process state, and consequently the residual would
tend to zero (insensitive to the fault) when the model mismatch
and noise effects were omitted. In addition to the above analysis,
this point was also affirmed by Yu et al. (1999), where the
simulation data clearly disclosed that the neural network model
of the dependent mode generated residual that was insensitive to
the fault. Besides, the method described by Patton et al. (1994) was
not practical for most nonlinear systems as some of the states may
not be measurable, while the design of nonlinear state observer is
very difficult.

The insensitive residual generated by static network of depen-
dent mode can be avoided where the process sensor faults should
be treated was proposed by Yu et al. (1999). In their work, a semi-
independent MLP network was used with the predicted output by
the network model used to replace process output in the network
input. Then, the model predicted output was reset by the real
process output on every period of time to reduce the growing
model prediction error. This was called semi-independent mode.
The residual generated in this way was sensitive to the fault but
the prediction error is bigger and the residual is not smooth, and a
filer had to be used to smoothen the residual. A higher threshold
had to be used due to the increased model prediction error and
therefore some faults with small amplitude would then not be
detected.

In the field of PEMFC, most approaches for fault detection used a
model-based approach which involved the comparison of the
observed behavior of the process to a reference model. In the aspect
of hydrogen safety and efficiency for PEMFC, Ingimundarson et al.
(2008) and Lebbal and Lecoeuche (2009) have developed a computer
simulation tool which can be used to detect and monitor faults in the
hydrogen stations. Xue et al. (2006) proposed a model-based condi-
tion monitoring scheme that employs the Hotelling T2 statistical
analysis for fault detection of PEMFC. This model-based robust
condition monitoring scheme can deal with the operating condition
variation, various uncertainty in a fuel cell system and measurement
noise.

FDI for the PEMFC systems is challenging due to its nonlinear
nature. Thus, a method needs to be developed which can tackle
the above problems in a simple and effective way. This is the
motive of this paper. The novelty of this work lies in using the
independent RBF network to model the fuel cell stacks, and
generating the residual. By acquiring process data under different
disturbances and with or without faults, the network model can be
trained to make the residual of FDI monitoring system more
sensitive to the faults and more robust to the disturbance. To
enhance the model accuracy while reducing the false alarm rate,
the recursive orthogonal least squares (ROLS) algorithm is
employed to train the RBF model. For fault isolation, another RBF
network is used to classify the different features of different faults
on the residual vector. By setting appropriate number of hidden
layer nodes, the clearness of the isolation can be maximized. The
Michigan benchmark model is used as the benchmark to evaluate
the proposed method with and without faults occurring in the
process. The Michigan model has been modified to introduce one

component fault, one actuator fault and three sensor faults.
Simulation results approved the effectiveness of the method for
detection and isolation of the faults with the fault size as small as
710% of their nominal values. The rest of paper is arranged as
follows: Section 2 presents the dynamics of the PEMFC systems.
The RBF neural network model is presented in Section 3. These are
followed by fault detection in Section 4 and fault isolation in
Section 5. Finally, conclusions are discussed in Section 6.

2. Proton exchange membrane fuel cell dynamics and faults

A fuel cell consists of two electrodes; a negative electrode (anode)
and a positive electrode (cathode) separated by an electrolyte. Fuel
cells convert the chemical energy of the hydrogen fuel (on the anode
side) into electric energy while through a chemical reaction with
oxygen (on the cathode side) produce water and heat as end product.
Hydrogen atoms separate into protons and electrons once the
chemical reaction happens. The electrons go through the load which
contains a flow of electricity while the protons migrate through the
electrolyte to the cathode side, where they reunite with oxygen to
produce water and heat as shown in Fig. 1. To maintain the desired
air supply, the air supply needs to replenish the air to maintain the
oxygen partial pressure. The air supply system consists of an air
compressor, an electric motor and pipes or manifolds between the
components. The compressor not only achieves desired air flow but
also increases air pressure which significantly improves the reaction
at the membranes, and thus the overall efficiency and power density
(Pukrushpan et al., 2004a).

2.1. Compressor model

The flow and temperature out of the compressor (Wcp and Tcp)
depend on the compressor rotational speed ωcp. A lumped rota-
tional model is used to represent the dynamic behavior of the
compressor (Pukrushpan et al., 2004a):

Jcp
dωcpðtÞ

dt
¼ τcmðtÞ�τcpðtÞ ð1Þ

where τcm(vcm, ωcp) is the compressor motor (CM) torque and τcp is
the load torque. The compressor motor torque is calculated using a
static motor equation:

τcm ¼ ηcm
kt
Rcm

½VcmðtÞ�kvωcpðtÞ� ð2Þ

where kt, Rcm and kv are motor constants and ηcm is the motor
mechanical efficiency. The torque required to drive the compressor
is calculated using the thermodynamic equation.

τcpðtÞ ¼
cpTatmðtÞ
ηcpωcpðtÞ

psmðtÞ
patm

� �ðγ�1Þ=γ
�1

" #
WcpðtÞ ð3Þ

where γ is the ratio of the specific heats of air (¼1.4), cp is the
constant pressure specific heat capacity of air (¼1004 J kg�1 K�1),
ηcp is the motor compressor efficiency, psm is the pressure inside

Fig. 1. PEMFC chemical reaction.
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